
If the relation between two inverse hyperbolic functions is given as ${{\sinh }^{-1}}\left( 2\alpha \right)={{\cosh }^{-1}}\left( \beta \right)$, then find the relation between $\alpha $ and $\beta $?
(a) ${{\alpha }^{2}}+{{\beta }^{2}}={{\alpha }^{4}}$,
(b) ${{\beta }^{2}}-4{{\alpha }^{2}}=1$,
(c) ${{\alpha }^{2}}+{{\beta }^{2}}={{\beta }^{2}}$,
(d) ${{\alpha }^{2}}={{\beta }^{2}}$.
Answer
550.5k+ views
Hint: We start solving the problem by recalling the definitions of ${{\sinh }^{-1}}\left( x \right)$ and ${{\cosh }^{-1}}\left( x \right)$. We apply these definitions to the given relation ${{\sinh }^{-1}}\left( 2\alpha \right)={{\cosh }^{-1}}\left( \beta \right)$. We then bring the terms with square root on one side and the terms with out square root on other side. We square them on both sides and make necessary calculations and repeat the previous step to get the desired solution.
Complete step by step answer:
According to the problem, we are given the relation between two inverse hyperbolic functions as ${{\sinh }^{-1}}\left( 2\alpha \right)={{\cosh }^{-1}}\left( \beta \right)$. We need to find the relation between $\alpha $ and $\beta $.
Let us recall the definitions of ${{\sinh }^{-1}}\left( x \right)$ and ${{\cosh }^{-1}}\left( x \right)$.
We know that ${{\sinh }^{-1}}\left( x \right)={{\log }_{e}}\left( x+\sqrt{{{x}^{2}}+1} \right)$ and ${{\cosh }^{-1}}\left( x \right)={{\log }_{e}}\left( x+\sqrt{{{x}^{2}}-1} \right)$. We use this in the given relation ${{\sinh }^{-1}}\left( 2\alpha \right)={{\cosh }^{-1}}\left( \beta \right)$.
$\Rightarrow {{\log }_{e}}\left( 2\alpha +\sqrt{{{\left( 2\alpha \right)}^{2}}+1} \right)={{\log }_{e}}\left( \beta +\sqrt{{{\beta }^{2}}-1} \right)$.
$\Rightarrow {{\log }_{e}}\left( 2\alpha +\sqrt{4{{\alpha }^{2}}+1} \right)={{\log }_{e}}\left( \beta +\sqrt{{{\beta }^{2}}-1} \right)$.
$\Rightarrow {{\log }_{e}}\left( 2\alpha +\sqrt{4{{\alpha }^{2}}+1} \right)-{{\log }_{e}}\left( \beta +\sqrt{{{\beta }^{2}}-1} \right)=0$.
We know that ${{\log }_{a}}x-{{\log }_{a}}y={{\log }_{a}}\dfrac{x}{y}$. For a positive value of a, x and y.
\[\Rightarrow {{\log }_{e}}\left( \dfrac{\left( 2\alpha +\sqrt{4{{\alpha }^{2}}+1} \right)}{\left( \beta +\sqrt{{{\beta }^{2}}-1} \right)} \right)=0\].
We know that if ${{\log }_{a}}x=0$, then $x=1$.
So, we get \[\dfrac{2\alpha +\sqrt{4{{\alpha }^{2}}+1}}{\beta +\sqrt{{{\beta }^{2}}-1}}=1\].
$\Rightarrow 2\alpha +\sqrt{4{{\alpha }^{2}}+1}=\beta +\sqrt{{{\beta }^{2}}-1}$.
$\Rightarrow 2\alpha -\beta =\sqrt{{{\beta }^{2}}-1}-\sqrt{4{{\alpha }^{2}}+1}$.
Now, let us square on both sides.
$\Rightarrow {{\left( 2\alpha -\beta \right)}^{2}}={{\left( \sqrt{{{\beta }^{2}}-1}-\sqrt{4{{\alpha }^{2}}+1} \right)}^{2}}$.
We know that ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$.
$\Rightarrow {{\left( 2\alpha \right)}^{2}}+{{\left( \beta \right)}^{2}}-2\left( 2\alpha \right)\left( \beta \right)={{\left( \sqrt{{{\beta }^{2}}-1} \right)}^{2}}+{{\left( \sqrt{4{{\alpha }^{2}}+1} \right)}^{2}}-2\left( \sqrt{{{\beta }^{2}}-1} \right)\left( \sqrt{4{{\alpha }^{2}}+1} \right)$.
$\Rightarrow 4{{\alpha }^{2}}+{{\beta }^{2}}-4\alpha \beta ={{\beta }^{2}}-1+4{{\alpha }^{2}}+1-2\left( \sqrt{\left( {{\beta }^{2}}-1 \right)\left( 4{{\alpha }^{2}}+1 \right)} \right)$.
$\Rightarrow 4{{\alpha }^{2}}+{{\beta }^{2}}-{{\beta }^{2}}-4{{\alpha }^{2}}-4\alpha \beta =-2\left( \sqrt{4{{\alpha }^{2}}{{\beta }^{2}}-4{{\alpha }^{2}}+{{\beta }^{2}}-1} \right)$.
$\Rightarrow -4\alpha \beta =-2\left( \sqrt{4{{\alpha }^{2}}{{\beta }^{2}}-4{{\alpha }^{2}}+{{\beta }^{2}}-1} \right)$.
$\Rightarrow 2\alpha \beta =\sqrt{4{{\alpha }^{2}}{{\beta }^{2}}-4{{\alpha }^{2}}+{{\beta }^{2}}-1}$.
Let us again square on both sides.
$\Rightarrow {{\left( 2\alpha \beta \right)}^{2}}={{\left( \sqrt{4{{\alpha }^{2}}{{\beta }^{2}}-4{{\alpha }^{2}}+{{\beta }^{2}}-1} \right)}^{2}}$.
$\Rightarrow 4{{\alpha }^{2}}{{\beta }^{2}}=4{{\alpha }^{2}}{{\beta }^{2}}-4{{\alpha }^{2}}+{{\beta }^{2}}-1$.
$\Rightarrow {{\beta }^{2}}-4{{\alpha }^{2}}=4{{\alpha }^{2}}{{\beta }^{2}}-4{{\alpha }^{2}}{{\beta }^{2}}+1$.
$\Rightarrow {{\beta }^{2}}-4{{\alpha }^{2}}=1$.
So, we have found the relation between the $\alpha $ and $\beta $ as ${{\beta }^{2}}-4{{\alpha }^{2}}=1$.
∴ The correct option for the given problem is (b).
Note:
Alternatively, we can solve this problem as shown below,
We have given ${{\sinh }^{-1}}\left( 2\alpha \right)={{\cosh }^{-1}}\left( \beta \right)$.
\[\Rightarrow 2\alpha =\sinh \left( {{\cosh }^{-1}}\left( \beta \right) \right)\].
Let us assume ${{\cosh }^{-1}}\left( \beta \right)=x$. So, we get $\cosh x=\beta $.
\[\Rightarrow 2\alpha =\sinh \left( x \right)\] ---(1).
We know that ${{\cosh }^{2}}x-{{\sinh }^{2}}x=1$.
$\Rightarrow {{\beta }^{2}}-{{\sinh }^{2}}x=1$.
$\Rightarrow {{\beta }^{2}}-1={{\sinh }^{2}}x$.
$\Rightarrow \sinh x=\sqrt{{{\beta }^{2}}-1}$. Let us substitute this in equation (1).
\[\Rightarrow 2\alpha =\sqrt{{{\beta }^{2}}-1}\].
Let us square on both sides.
\[\Rightarrow {{\left( 2\alpha \right)}^{2}}={{\left( \sqrt{{{\beta }^{2}}-1} \right)}^{2}}\].
\[\Rightarrow 4{{\alpha }^{2}}={{\beta }^{2}}-1\].
$\Rightarrow {{\beta }^{2}}-4{{\alpha }^{2}}=1$.
Complete step by step answer:
According to the problem, we are given the relation between two inverse hyperbolic functions as ${{\sinh }^{-1}}\left( 2\alpha \right)={{\cosh }^{-1}}\left( \beta \right)$. We need to find the relation between $\alpha $ and $\beta $.
Let us recall the definitions of ${{\sinh }^{-1}}\left( x \right)$ and ${{\cosh }^{-1}}\left( x \right)$.
We know that ${{\sinh }^{-1}}\left( x \right)={{\log }_{e}}\left( x+\sqrt{{{x}^{2}}+1} \right)$ and ${{\cosh }^{-1}}\left( x \right)={{\log }_{e}}\left( x+\sqrt{{{x}^{2}}-1} \right)$. We use this in the given relation ${{\sinh }^{-1}}\left( 2\alpha \right)={{\cosh }^{-1}}\left( \beta \right)$.
$\Rightarrow {{\log }_{e}}\left( 2\alpha +\sqrt{{{\left( 2\alpha \right)}^{2}}+1} \right)={{\log }_{e}}\left( \beta +\sqrt{{{\beta }^{2}}-1} \right)$.
$\Rightarrow {{\log }_{e}}\left( 2\alpha +\sqrt{4{{\alpha }^{2}}+1} \right)={{\log }_{e}}\left( \beta +\sqrt{{{\beta }^{2}}-1} \right)$.
$\Rightarrow {{\log }_{e}}\left( 2\alpha +\sqrt{4{{\alpha }^{2}}+1} \right)-{{\log }_{e}}\left( \beta +\sqrt{{{\beta }^{2}}-1} \right)=0$.
We know that ${{\log }_{a}}x-{{\log }_{a}}y={{\log }_{a}}\dfrac{x}{y}$. For a positive value of a, x and y.
\[\Rightarrow {{\log }_{e}}\left( \dfrac{\left( 2\alpha +\sqrt{4{{\alpha }^{2}}+1} \right)}{\left( \beta +\sqrt{{{\beta }^{2}}-1} \right)} \right)=0\].
We know that if ${{\log }_{a}}x=0$, then $x=1$.
So, we get \[\dfrac{2\alpha +\sqrt{4{{\alpha }^{2}}+1}}{\beta +\sqrt{{{\beta }^{2}}-1}}=1\].
$\Rightarrow 2\alpha +\sqrt{4{{\alpha }^{2}}+1}=\beta +\sqrt{{{\beta }^{2}}-1}$.
$\Rightarrow 2\alpha -\beta =\sqrt{{{\beta }^{2}}-1}-\sqrt{4{{\alpha }^{2}}+1}$.
Now, let us square on both sides.
$\Rightarrow {{\left( 2\alpha -\beta \right)}^{2}}={{\left( \sqrt{{{\beta }^{2}}-1}-\sqrt{4{{\alpha }^{2}}+1} \right)}^{2}}$.
We know that ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$.
$\Rightarrow {{\left( 2\alpha \right)}^{2}}+{{\left( \beta \right)}^{2}}-2\left( 2\alpha \right)\left( \beta \right)={{\left( \sqrt{{{\beta }^{2}}-1} \right)}^{2}}+{{\left( \sqrt{4{{\alpha }^{2}}+1} \right)}^{2}}-2\left( \sqrt{{{\beta }^{2}}-1} \right)\left( \sqrt{4{{\alpha }^{2}}+1} \right)$.
$\Rightarrow 4{{\alpha }^{2}}+{{\beta }^{2}}-4\alpha \beta ={{\beta }^{2}}-1+4{{\alpha }^{2}}+1-2\left( \sqrt{\left( {{\beta }^{2}}-1 \right)\left( 4{{\alpha }^{2}}+1 \right)} \right)$.
$\Rightarrow 4{{\alpha }^{2}}+{{\beta }^{2}}-{{\beta }^{2}}-4{{\alpha }^{2}}-4\alpha \beta =-2\left( \sqrt{4{{\alpha }^{2}}{{\beta }^{2}}-4{{\alpha }^{2}}+{{\beta }^{2}}-1} \right)$.
$\Rightarrow -4\alpha \beta =-2\left( \sqrt{4{{\alpha }^{2}}{{\beta }^{2}}-4{{\alpha }^{2}}+{{\beta }^{2}}-1} \right)$.
$\Rightarrow 2\alpha \beta =\sqrt{4{{\alpha }^{2}}{{\beta }^{2}}-4{{\alpha }^{2}}+{{\beta }^{2}}-1}$.
Let us again square on both sides.
$\Rightarrow {{\left( 2\alpha \beta \right)}^{2}}={{\left( \sqrt{4{{\alpha }^{2}}{{\beta }^{2}}-4{{\alpha }^{2}}+{{\beta }^{2}}-1} \right)}^{2}}$.
$\Rightarrow 4{{\alpha }^{2}}{{\beta }^{2}}=4{{\alpha }^{2}}{{\beta }^{2}}-4{{\alpha }^{2}}+{{\beta }^{2}}-1$.
$\Rightarrow {{\beta }^{2}}-4{{\alpha }^{2}}=4{{\alpha }^{2}}{{\beta }^{2}}-4{{\alpha }^{2}}{{\beta }^{2}}+1$.
$\Rightarrow {{\beta }^{2}}-4{{\alpha }^{2}}=1$.
So, we have found the relation between the $\alpha $ and $\beta $ as ${{\beta }^{2}}-4{{\alpha }^{2}}=1$.
∴ The correct option for the given problem is (b).
Note:
Alternatively, we can solve this problem as shown below,
We have given ${{\sinh }^{-1}}\left( 2\alpha \right)={{\cosh }^{-1}}\left( \beta \right)$.
\[\Rightarrow 2\alpha =\sinh \left( {{\cosh }^{-1}}\left( \beta \right) \right)\].
Let us assume ${{\cosh }^{-1}}\left( \beta \right)=x$. So, we get $\cosh x=\beta $.
\[\Rightarrow 2\alpha =\sinh \left( x \right)\] ---(1).
We know that ${{\cosh }^{2}}x-{{\sinh }^{2}}x=1$.
$\Rightarrow {{\beta }^{2}}-{{\sinh }^{2}}x=1$.
$\Rightarrow {{\beta }^{2}}-1={{\sinh }^{2}}x$.
$\Rightarrow \sinh x=\sqrt{{{\beta }^{2}}-1}$. Let us substitute this in equation (1).
\[\Rightarrow 2\alpha =\sqrt{{{\beta }^{2}}-1}\].
Let us square on both sides.
\[\Rightarrow {{\left( 2\alpha \right)}^{2}}={{\left( \sqrt{{{\beta }^{2}}-1} \right)}^{2}}\].
\[\Rightarrow 4{{\alpha }^{2}}={{\beta }^{2}}-1\].
$\Rightarrow {{\beta }^{2}}-4{{\alpha }^{2}}=1$.
Recently Updated Pages
How do you convert r6sec theta into Cartesian form class 10 maths CBSE

How do you solve dfrac5y3dfracy+72y6+1 and find any class 10 maths CBSE

If sin A+B1 and cos AB1 0circ le left A+B rightle 90circ class 10 maths CBSE

On the number line 10 is to the of zero class 10 maths CBSE

How do you solve 5xge 30 class 10 maths CBSE

In the following sentence supply a verb in agreement class 10 english CBSE

Trending doubts
Write an application to the principal requesting five class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

List of Lok Sabha Speakers of India

Which one of the following is the deepest seaport of class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
