
If r varies directly as the cube of s and r=5 when s=3, find r when s=2
(a) 135
(b) $\dfrac{135}{8}$
(c) $\dfrac{35}{8}$
(d) None of these
Answer
585.9k+ views
Hint: When a variable varies directly to another (say x varies directly as y), we can write the relation as x=ky (where k is a proportional constant). In this case, since r varies directly as the cube of s, we can write the relation as r=k${{s}^{3}}$ and then solve the question.
Complete step-by-step answer:
Firstly, we try to use the first condition given in the problem (that is, r=5 when s=3). This would help us in finding the value of proportional constant.
r=k${{s}^{3}}$
Putting the value of r=5 when s=3, we get,
5=k$\times {{3}^{3}}$
5=27k
k=$\dfrac{5}{27}$ -- (1)
Now, since we have the value of proportional constant, we can find the value of r for any value of s. We now just have to put the value of k and s in equation r=k${{s}^{3}}$ to get the value of r. Now, we find the value of r for s=2.
r=k${{s}^{3}}$
r=$\dfrac{5}{27}$$\times {{2}^{3}}$
r=$\dfrac{5\times 8}{27}$
r=$\dfrac{40}{27}$
Thus, the value of r is $\dfrac{40}{27}$. Hence, the correct option is (d) None of these.
Hint: To solve problems involving direct and inverse variations in general, we use a general principle to solve the problems. Suppose, c varies directly with d and inversely with e. We use the following relation- c=k$\dfrac{d}{e}$(where k is the value of proportionality constant). The problem can then be solved by acquiring any additional relation which would further help in evaluating the problem further.
Complete step-by-step answer:
Firstly, we try to use the first condition given in the problem (that is, r=5 when s=3). This would help us in finding the value of proportional constant.
r=k${{s}^{3}}$
Putting the value of r=5 when s=3, we get,
5=k$\times {{3}^{3}}$
5=27k
k=$\dfrac{5}{27}$ -- (1)
Now, since we have the value of proportional constant, we can find the value of r for any value of s. We now just have to put the value of k and s in equation r=k${{s}^{3}}$ to get the value of r. Now, we find the value of r for s=2.
r=k${{s}^{3}}$
r=$\dfrac{5}{27}$$\times {{2}^{3}}$
r=$\dfrac{5\times 8}{27}$
r=$\dfrac{40}{27}$
Thus, the value of r is $\dfrac{40}{27}$. Hence, the correct option is (d) None of these.
Hint: To solve problems involving direct and inverse variations in general, we use a general principle to solve the problems. Suppose, c varies directly with d and inversely with e. We use the following relation- c=k$\dfrac{d}{e}$(where k is the value of proportionality constant). The problem can then be solved by acquiring any additional relation which would further help in evaluating the problem further.
Recently Updated Pages
How do you convert r6sec theta into Cartesian form class 10 maths CBSE

How do you solve dfrac5y3dfracy+72y6+1 and find any class 10 maths CBSE

If sin A+B1 and cos AB1 0circ le left A+B rightle 90circ class 10 maths CBSE

On the number line 10 is to the of zero class 10 maths CBSE

How do you solve 5xge 30 class 10 maths CBSE

In the following sentence supply a verb in agreement class 10 english CBSE

Trending doubts
Write an application to the principal requesting five class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the median of the first 10 natural numbers class 10 maths CBSE

Write examples of herbivores carnivores and omnivo class 10 biology CBSE
