
If \[\left( {x{\text{ }} + {\text{ }}iy} \right)\left( {2{\text{ }} + {\text{ }}cis\theta } \right){\text{ }} = {\text{ }}3\] then \[{x^2} + {y^2} - 4x{\text{ }} + {\text{ }}3\]= ?
Answer
507.6k+ views
Hint: While approaching these types of questions first go with separation of the values and then squaring. Before moving into the problem further first we will have to know what complex number and cisθ means. Complex number contains real and imaginary parts. In the equation x+iy, x is the real part and y is the imaginary part. Cisθ is the short form for the complex equation cosθ + isinθ
Complete step by step solution:
Given Equation \[\left( {x{\text{ }} + {\text{ }}iy} \right)\left( {2{\text{ }} + {\text{ }}cis\theta } \right){\text{ }} = {\text{ }}3\]
from this we have to calculate \[{x^2} + {y^2} - 4x{\text{ }} + {\text{ }}3\]
First we will be substituting the value \[cis\theta {\text{ }} = {\text{ }}cos\theta {\text{ }} + {\text{ }}isin\theta \] in the equation \[\left( {x{\text{ }} + {\text{ }}iy} \right)\left( {2{\text{ }} + {\text{ }}cis\theta } \right){\text{ }} = {\text{ }}3\]
i.e., \[\left( {x{\text{ }} + {\text{ }}iy} \right)\left( {2{\text{ }} + {\text{ }}cos\theta {\text{ }} + {\text{ }}isin\theta } \right){\text{ }} = {\text{ }}3\];
Simplifying the equation
\[\Rightarrow 2x{\text{ }} + {\text{ }}xcos\theta {\text{ }} + {\text{ }}i\left( {xsin\theta } \right){\text{ }} + {\text{ }}i\left( {2y} \right){\text{ }} + i\left( {ycos\theta } \right){\text{ }} + {\text{ }}{i^2}\left( {ysin\theta } \right){\text{ }} = {\text{ }}3\];
\[\Rightarrow 2x{\text{ }} + {\text{ }}xcos\theta {\text{ }} - ysin\theta {\text{ }} + {\text{ }}i\left( {xsin\theta {\text{ }} + 2y{\text{ }} + ycos\theta } \right) = 3\]
Since $i = \sqrt - 1, so i2= -1$
Now we have to equate real and imaginary parts on both the sides.
\[\Rightarrow 2x{\text{ }} + {\text{ }}xcos\theta {\text{ }} - ysin\theta {\text{ }} = 3\]; -------- say eq(1)
\[\Rightarrow xsin\theta {\text{ }} + {\text{ }}2y{\text{ }} + {\text{ }}ycos\theta {\text{ }} = {\text{ }}0\]; ------ say eq(2)
Rewriting the equations as the trigonometric and numerical values on either sides.
\[\Rightarrow xcos\theta {\text{ }} - ysin\theta {\text{ }} = 3{\text{ }} - 2x\]----- (1)
\[\Rightarrow xsin\theta {\text{ }} + {\text{ }}ycos\theta {\text{ }} = {\text{ }} - 2y\]----- (2)
Squaring on both sides of the equations
\[\Rightarrow {\left( {xcos\theta {\text{ }}-{\text{ }}ysin\theta } \right)^2} = {\text{ }}{\left( {3 - 2x} \right)^2}\]
\[\Rightarrow {x^2}co{s^2}\theta {\text{ }} + {y^2}si{n^2}\theta {\text{ }} - 2xysin\theta cos\theta {\text{ }} = 9{\text{ }} + {\text{ }}4{x^2} - 12x\]----- (1)
\[\
\Rightarrow {\left( {xsin\theta {\text{ }} + ycos\theta } \right)^2} = {\text{ }}{\left( { - 2y} \right)^2} \\
\\
\ \]
\[\Rightarrow {x^2}si{n^2}\theta {\text{ }} + {y^2}co{s^2}\theta {\text{ }} + {\text{ }}2xysin\theta cos\theta {\text{ }} = {\text{ }}4{y^2}\]------ (2)
adding eq(1) and eq(2)
\[\Rightarrow {x^2}\left( {si{n^2}\theta {\text{ }} + {\text{ }}co{s^2}\theta } \right){\text{ }} + {\text{ }}{y^2}\left( {{\text{ }}si{n^2}\theta {\text{ }} + {\text{ }}co{s^2}\theta } \right){\text{ }} + {\text{ }}2xysin\theta cos\theta {\text{ }} - 2xysin\theta cos\theta = {\text{ }}9{\text{ }} + {\text{ }}4{x^2} - 12x{\text{ }} + {\text{ }}4{y^2}\]
we know that\[si{n^2}\theta {\text{ }} + {\text{ }}co{s^2}\theta {\text{ }} = {\text{ }}1\];
\[\
\Rightarrow {x^2} + {\text{ }}{y^2} = 9{\text{ }} + {\text{ }}4{x^2} - 12x{\text{ }} + {\text{ }}4{y^2} \\
\Rightarrow \;3{x^2} + {\text{ }}3{y^2} - 12x + 9 = 0 \\
\Rightarrow 3\left( {{x^2} + {\text{ }}{y^2}-{\text{ }}4x{\text{ }} + 3} \right) = 0 \\
\Rightarrow \;{x^2} + {\text{ }}{y^2}-{\text{ }}4x{\text{ }} + 3{\text{ }} = {\text{ }}0 \\
\ \]
Therefore \[{x^2} + {\text{ }}{y^2}-{\text{ }}4x{\text{ }} + 3{\text{ }} = {\text{ }}0.\]
Note: In these questions the whole idea depends on separating the imaginary and real parts and the further calculations. Make sure that you know the trigonometric identities and the operations involved in it. Many of the students go for the substituting in the question so avoid that an focus on how we can get the solution from squaring and adding.
Complete step by step solution:
Given Equation \[\left( {x{\text{ }} + {\text{ }}iy} \right)\left( {2{\text{ }} + {\text{ }}cis\theta } \right){\text{ }} = {\text{ }}3\]
from this we have to calculate \[{x^2} + {y^2} - 4x{\text{ }} + {\text{ }}3\]
First we will be substituting the value \[cis\theta {\text{ }} = {\text{ }}cos\theta {\text{ }} + {\text{ }}isin\theta \] in the equation \[\left( {x{\text{ }} + {\text{ }}iy} \right)\left( {2{\text{ }} + {\text{ }}cis\theta } \right){\text{ }} = {\text{ }}3\]
i.e., \[\left( {x{\text{ }} + {\text{ }}iy} \right)\left( {2{\text{ }} + {\text{ }}cos\theta {\text{ }} + {\text{ }}isin\theta } \right){\text{ }} = {\text{ }}3\];
Simplifying the equation
\[\Rightarrow 2x{\text{ }} + {\text{ }}xcos\theta {\text{ }} + {\text{ }}i\left( {xsin\theta } \right){\text{ }} + {\text{ }}i\left( {2y} \right){\text{ }} + i\left( {ycos\theta } \right){\text{ }} + {\text{ }}{i^2}\left( {ysin\theta } \right){\text{ }} = {\text{ }}3\];
\[\Rightarrow 2x{\text{ }} + {\text{ }}xcos\theta {\text{ }} - ysin\theta {\text{ }} + {\text{ }}i\left( {xsin\theta {\text{ }} + 2y{\text{ }} + ycos\theta } \right) = 3\]
Since $i = \sqrt - 1, so i2= -1$
Now we have to equate real and imaginary parts on both the sides.
\[\Rightarrow 2x{\text{ }} + {\text{ }}xcos\theta {\text{ }} - ysin\theta {\text{ }} = 3\]; -------- say eq(1)
\[\Rightarrow xsin\theta {\text{ }} + {\text{ }}2y{\text{ }} + {\text{ }}ycos\theta {\text{ }} = {\text{ }}0\]; ------ say eq(2)
Rewriting the equations as the trigonometric and numerical values on either sides.
\[\Rightarrow xcos\theta {\text{ }} - ysin\theta {\text{ }} = 3{\text{ }} - 2x\]----- (1)
\[\Rightarrow xsin\theta {\text{ }} + {\text{ }}ycos\theta {\text{ }} = {\text{ }} - 2y\]----- (2)
Squaring on both sides of the equations
\[\Rightarrow {\left( {xcos\theta {\text{ }}-{\text{ }}ysin\theta } \right)^2} = {\text{ }}{\left( {3 - 2x} \right)^2}\]
\[\Rightarrow {x^2}co{s^2}\theta {\text{ }} + {y^2}si{n^2}\theta {\text{ }} - 2xysin\theta cos\theta {\text{ }} = 9{\text{ }} + {\text{ }}4{x^2} - 12x\]----- (1)
\[\
\Rightarrow {\left( {xsin\theta {\text{ }} + ycos\theta } \right)^2} = {\text{ }}{\left( { - 2y} \right)^2} \\
\\
\ \]
\[\Rightarrow {x^2}si{n^2}\theta {\text{ }} + {y^2}co{s^2}\theta {\text{ }} + {\text{ }}2xysin\theta cos\theta {\text{ }} = {\text{ }}4{y^2}\]------ (2)
adding eq(1) and eq(2)
\[\Rightarrow {x^2}\left( {si{n^2}\theta {\text{ }} + {\text{ }}co{s^2}\theta } \right){\text{ }} + {\text{ }}{y^2}\left( {{\text{ }}si{n^2}\theta {\text{ }} + {\text{ }}co{s^2}\theta } \right){\text{ }} + {\text{ }}2xysin\theta cos\theta {\text{ }} - 2xysin\theta cos\theta = {\text{ }}9{\text{ }} + {\text{ }}4{x^2} - 12x{\text{ }} + {\text{ }}4{y^2}\]
we know that\[si{n^2}\theta {\text{ }} + {\text{ }}co{s^2}\theta {\text{ }} = {\text{ }}1\];
\[\
\Rightarrow {x^2} + {\text{ }}{y^2} = 9{\text{ }} + {\text{ }}4{x^2} - 12x{\text{ }} + {\text{ }}4{y^2} \\
\Rightarrow \;3{x^2} + {\text{ }}3{y^2} - 12x + 9 = 0 \\
\Rightarrow 3\left( {{x^2} + {\text{ }}{y^2}-{\text{ }}4x{\text{ }} + 3} \right) = 0 \\
\Rightarrow \;{x^2} + {\text{ }}{y^2}-{\text{ }}4x{\text{ }} + 3{\text{ }} = {\text{ }}0 \\
\ \]
Therefore \[{x^2} + {\text{ }}{y^2}-{\text{ }}4x{\text{ }} + 3{\text{ }} = {\text{ }}0.\]
Note: In these questions the whole idea depends on separating the imaginary and real parts and the further calculations. Make sure that you know the trigonometric identities and the operations involved in it. Many of the students go for the substituting in the question so avoid that an focus on how we can get the solution from squaring and adding.
Recently Updated Pages
How do you convert r6sec theta into Cartesian form class 10 maths CBSE

How do you solve dfrac5y3dfracy+72y6+1 and find any class 10 maths CBSE

If sin A+B1 and cos AB1 0circ le left A+B rightle 90circ class 10 maths CBSE

On the number line 10 is to the of zero class 10 maths CBSE

How do you solve 5xge 30 class 10 maths CBSE

In the following sentence supply a verb in agreement class 10 english CBSE

Trending doubts
Write an application to the principal requesting five class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the median of the first 10 natural numbers class 10 maths CBSE

Write examples of herbivores carnivores and omnivo class 10 biology CBSE
