
If $f(x)=\dfrac{{{9}^{x}}}{{{9}^{x}}+3}$ then \[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{2}{1996} \right)+...f\left( \dfrac{1995}{1996} \right)\] is equal to
A. $997$
B. $997.5$
C. $998$
D. $998.5$
Answer
558.3k+ views
Hint:Hint: We need to find the value of \[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{2}{1996} \right)+...f\left( \dfrac{1995}{1996} \right)\] . First we have to get a relation between $f(x)$ and $f(1-x)$ . Put the value of $x$ as $(1-x)$ in $f(x)=\dfrac{{{9}^{x}}}{{{9}^{x}}+3}$ . Now add $f(x)$ and $f(1-x)$ . Rearrange the equation \[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{2}{1996} \right)+...f\left( \dfrac{1995}{1996} \right)\] in the form $f(x)+f(1-x)$ . There will be $997$ such terms plus $f\left( \dfrac{998}{1996} \right)$ . Simplify further and by substituting in $f(x)=\dfrac{{{9}^{x}}}{{{9}^{x}}+3}$ we will get the value of $f\left( \dfrac{998}{1996} \right)$ or $f\left( \dfrac{1}{2} \right)$ .
Complete step by step answer:
We need to find the value of \[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{2}{1996} \right)+...f\left( \dfrac{1995}{1996} \right)\] given that $f(x)=\dfrac{{{9}^{x}}}{{{9}^{x}}+3}...(i)$ .
First let us find $f(1-x)$ . For this, replace $x$ by $1-x$ in equation $(i)$ .
Therefore, \[f(1-x)=\dfrac{{{9}^{1-x}}}{{{9}^{1-x}}+3}\] .
We know that ${{a}^{m+n}}={{a}^{m}}{{a}^{n}}$ . So the above equation can be written as
Therefore, \[f(1-x)=\dfrac{9\times {{9}^{-x}}}{\left( 9\times {{9}^{-x}} \right)+3}\] .
Now taking ${{9}^{-x}}$ common from denominator, we get
\[f(1-x)=\dfrac{9\times {{9}^{-x}}}{{{9}^{-x}}\left( 9+\dfrac{3}{{{9}^{-x}}} \right)}\]
Now cancelling ${{9}^{-x}}$ from numerator and denominator, we get
\[f(1-x)=\dfrac{9}{\left( 9+3\times {{9}^{x}} \right)}\]
Now, take $3$ common from the denominator terms. We get
\[f(1-x)=\dfrac{9}{3(3+{{9}^{x}})}\]
Cancelling $3$ from numerator and denominator, we get
\[f(1-x)=\dfrac{3}{(3+{{9}^{x}})}\]
Now let us find $f(x)+f(1-x)$ .
That is, $f(x)+f(1-x)=\dfrac{{{9}^{x}}}{{{9}^{x}}+3}+\dfrac{3}{(3+{{9}^{x}})}$
Adding, we get
$f(x)+f(1-x)=\dfrac{{{9}^{x}}+3}{{{9}^{x}}+3}$
Cancelling the numerator and denominator, we get
$f(x)+f(1-x)=1...(a)$
Now consider \[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{2}{1996} \right)+...f\left( \dfrac{1995}{1996} \right)\] . The first and last term are of the form in equation $(a)$ .
Therefore, we can group it in the form \[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{1995}{1996} \right)+f\left( \dfrac{2}{1996} \right)+f\left( \dfrac{1994}{1996} \right)+...\]
i.e. \[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{1995}{1996} \right)+f\left( \dfrac{2}{1996} \right)+f\left( \dfrac{1994}{1996} \right)+...\]
i.e. $1+1+....$
We need to find how many such pairs will be there. For that we take \[1995\] and divide it by $2$ .
So there will be $997$ such pairs and one pair will be left alone.
i.e. $1+1+....+1+f\left( \dfrac{998}{1996} \right)$ \[\]
$=997+f\left( \dfrac{998}{1996} \right)$
Dividing $\dfrac{998}{1996}$ , we get
$997+f\left( \dfrac{1}{2} \right)$
To get the value of $f\left( \dfrac{1}{2} \right)$ substitute $x=\dfrac{1}{2}$ in equation $(i)$ .
i.e. $997+\dfrac{{{9}^{\dfrac{1}{2}}}}{{{9}^{\dfrac{1}{2}}}+3}$
Solving the root terms, we get
$997+\dfrac{3}{3+3}$
Further simplifying, we get
$997+\dfrac{3}{6}=997+\dfrac{1}{2}$
$=997+0.5$
$=997.5$
Hence, the correct option is B.
Note:
$f(x)+f(1-x)=1$ is the base of this problem. The last step few steps can also be done in the following way:
We need to find how many such pairs will be there. For that, we take \[1995\] and divide it by $2$ .
So the answer will be $997.5$ .
Complete step by step answer:
We need to find the value of \[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{2}{1996} \right)+...f\left( \dfrac{1995}{1996} \right)\] given that $f(x)=\dfrac{{{9}^{x}}}{{{9}^{x}}+3}...(i)$ .
First let us find $f(1-x)$ . For this, replace $x$ by $1-x$ in equation $(i)$ .
Therefore, \[f(1-x)=\dfrac{{{9}^{1-x}}}{{{9}^{1-x}}+3}\] .
We know that ${{a}^{m+n}}={{a}^{m}}{{a}^{n}}$ . So the above equation can be written as
Therefore, \[f(1-x)=\dfrac{9\times {{9}^{-x}}}{\left( 9\times {{9}^{-x}} \right)+3}\] .
Now taking ${{9}^{-x}}$ common from denominator, we get
\[f(1-x)=\dfrac{9\times {{9}^{-x}}}{{{9}^{-x}}\left( 9+\dfrac{3}{{{9}^{-x}}} \right)}\]
Now cancelling ${{9}^{-x}}$ from numerator and denominator, we get
\[f(1-x)=\dfrac{9}{\left( 9+3\times {{9}^{x}} \right)}\]
Now, take $3$ common from the denominator terms. We get
\[f(1-x)=\dfrac{9}{3(3+{{9}^{x}})}\]
Cancelling $3$ from numerator and denominator, we get
\[f(1-x)=\dfrac{3}{(3+{{9}^{x}})}\]
Now let us find $f(x)+f(1-x)$ .
That is, $f(x)+f(1-x)=\dfrac{{{9}^{x}}}{{{9}^{x}}+3}+\dfrac{3}{(3+{{9}^{x}})}$
Adding, we get
$f(x)+f(1-x)=\dfrac{{{9}^{x}}+3}{{{9}^{x}}+3}$
Cancelling the numerator and denominator, we get
$f(x)+f(1-x)=1...(a)$
Now consider \[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{2}{1996} \right)+...f\left( \dfrac{1995}{1996} \right)\] . The first and last term are of the form in equation $(a)$ .
Therefore, we can group it in the form \[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{1995}{1996} \right)+f\left( \dfrac{2}{1996} \right)+f\left( \dfrac{1994}{1996} \right)+...\]
i.e. \[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{1995}{1996} \right)+f\left( \dfrac{2}{1996} \right)+f\left( \dfrac{1994}{1996} \right)+...\]
i.e. $1+1+....$
We need to find how many such pairs will be there. For that we take \[1995\] and divide it by $2$ .
So there will be $997$ such pairs and one pair will be left alone.
i.e. $1+1+....+1+f\left( \dfrac{998}{1996} \right)$ \[\]
$=997+f\left( \dfrac{998}{1996} \right)$
Dividing $\dfrac{998}{1996}$ , we get
$997+f\left( \dfrac{1}{2} \right)$
To get the value of $f\left( \dfrac{1}{2} \right)$ substitute $x=\dfrac{1}{2}$ in equation $(i)$ .
i.e. $997+\dfrac{{{9}^{\dfrac{1}{2}}}}{{{9}^{\dfrac{1}{2}}}+3}$
Solving the root terms, we get
$997+\dfrac{3}{3+3}$
Further simplifying, we get
$997+\dfrac{3}{6}=997+\dfrac{1}{2}$
$=997+0.5$
$=997.5$
Hence, the correct option is B.
Note:
$f(x)+f(1-x)=1$ is the base of this problem. The last step few steps can also be done in the following way:
We need to find how many such pairs will be there. For that, we take \[1995\] and divide it by $2$ .
So the answer will be $997.5$ .
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Tropical deciduous trees shed their leaves in the dry class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write a letter to the principal requesting him to grant class 10 english CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE

