
If $\alpha $ is an imaginary root of ${x^5} - 1 = 0$ then the equation whose roots are $\alpha + {\alpha ^4}$ and ${\alpha ^2} + {\alpha ^3}$ is
A. ${x^2} - x - 1 = 0$
B. ${x^2} + x - 1 = 0$
C. ${x^2} - x + 1 = 0$
D. ${x^2} + x + 1 = 0$
Answer
556.2k+ views
Hint: In this problem, we have to find the quadratic equation whose roots are $\alpha + {\alpha ^4}$ and ${\alpha ^2} + {\alpha ^3}$. We know that the sum of roots of quadratic equation $a{x^2} + bx + c$ is $ - \dfrac{b}{a}$ and the product of roots is $\dfrac{c}{a}$. We will use this information to find the required equation.
Complete step-by-step solution: In this problem, it is given that $\alpha $ is an imaginary root of the equation ${x^5} - 1 = 0$. That is, $\alpha $ satisfies the equation ${x^5} - 1 = 0$. Therefore, we can write ${\alpha ^5} - 1 = 0 \cdots \cdots \left( 1 \right)$
We know that the factorization of ${x^n} - 1$ is given by ${x^n} - 1 = \left( {x - 1} \right)\left( {1 + x + {x^2} + ... + {x^{n - 2}} + {x^{n - 1}}} \right)$. We will use this information in equation $\left( 1 \right)$. Therefore, we get
${\alpha ^5} - 1 = 0$
$ \Rightarrow \left( {\alpha - 1} \right)\left( {1 + \alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4}} \right) = 0$
$ \Rightarrow \alpha - 1 = 0$ or $1 + \alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4} = 0\quad \left[ {\because ab = 0 \Rightarrow a = 0} \right.$ or $\left. {b = 0} \right]$
$ \Rightarrow \alpha = 1$ or $1 + \alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4} = 0$
It is given that $\alpha $ is an imaginary root. So, we can say that $\alpha \ne 1$ because $\alpha = 1$ is the real root. Therefore, we have only $1 + \alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4} = 0 \cdots \cdots \left( 2 \right)$. Now from the equation $\left( 2 \right)$, we can write
$\alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4} = - 1$
$ \Rightarrow \left( {\alpha + {\alpha ^4}} \right) + \left( {{\alpha ^2} + {\alpha ^3}} \right) = - 1 \cdots \cdots \left( 3 \right)$
From equation $\left( 3 \right)$, we can say that the sum of two roots $\left( {\alpha + {\alpha ^4}} \right)$ and $\left( {{\alpha ^2} + {\alpha ^3}} \right)$ is $ - 1$.
Let us multiply by $\alpha $ on both sides of the equation $\left( 1 \right)$. Therefore, we get ${\alpha ^6} = \alpha $ and ${\alpha ^7} = {\alpha ^2}$.
Let us find the product of two roots $\left( {\alpha + {\alpha ^4}} \right)$ and $\left( {{\alpha ^2} + {\alpha ^3}} \right)$ . Therefore, we get
$\left( {\alpha + {\alpha ^4}} \right)\left( {{\alpha ^2} + {\alpha ^3}} \right)$
$ = {\alpha ^3} + {\alpha ^4} + {\alpha ^6} + {\alpha ^7}$
$ = {\alpha ^3} + {\alpha ^4} + \alpha + {\alpha ^2}\quad \left[ {\because {\alpha ^6} = \alpha ,{\alpha ^7} = {\alpha ^2}} \right]$
$ = \alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4}$
$ = - 1$
Note that here we write $\alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4} = - 1$ from equation $\left( 2 \right)$.
Now we have the following information:
$\left( 1 \right)$ The sum of two roots $\left( {\alpha + {\alpha ^4}} \right)$ and $\left( {{\alpha ^2} + {\alpha ^3}} \right)$ is $ - 1$.
$\left( 2 \right)$ The product of two roots $\left( {\alpha + {\alpha ^4}} \right)$ and $\left( {{\alpha ^2} + {\alpha ^3}} \right)$ is $ - 1$.
If the sum and product of two roots is known then we can say that the quadratic equation will be
${x^2} - $ (sum of roots) $x + $ (product of roots) $ = 0$
Therefore, the required equation is
${x^2} - \left( { - 1} \right)x + \left( { - 1} \right) = 0$
$ \Rightarrow {x^2} + x - 1 = 0$
Therefore, if $\alpha $ is an imaginary root of ${x^5} - 1 = 0$ then the equation is ${x^2} + x - 1 = 0$ whose roots are $\alpha + {\alpha ^4}$ and ${\alpha ^2} + {\alpha ^3}$.
Therefore, option B is true.
Note: The standard form of quadratic equation is $a{x^2} + bx + c = 0$ where $a \ne 0$. Every quadratic equation has exactly two roots. For the roots of quadratic equation, there are three possible cases:
$\left( 1 \right)$ Roots are real and distinct $\left( 2 \right)$ Roots are real and equal $\left( 3 \right)$ Roots are imaginary numbers.
Complete step-by-step solution: In this problem, it is given that $\alpha $ is an imaginary root of the equation ${x^5} - 1 = 0$. That is, $\alpha $ satisfies the equation ${x^5} - 1 = 0$. Therefore, we can write ${\alpha ^5} - 1 = 0 \cdots \cdots \left( 1 \right)$
We know that the factorization of ${x^n} - 1$ is given by ${x^n} - 1 = \left( {x - 1} \right)\left( {1 + x + {x^2} + ... + {x^{n - 2}} + {x^{n - 1}}} \right)$. We will use this information in equation $\left( 1 \right)$. Therefore, we get
${\alpha ^5} - 1 = 0$
$ \Rightarrow \left( {\alpha - 1} \right)\left( {1 + \alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4}} \right) = 0$
$ \Rightarrow \alpha - 1 = 0$ or $1 + \alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4} = 0\quad \left[ {\because ab = 0 \Rightarrow a = 0} \right.$ or $\left. {b = 0} \right]$
$ \Rightarrow \alpha = 1$ or $1 + \alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4} = 0$
It is given that $\alpha $ is an imaginary root. So, we can say that $\alpha \ne 1$ because $\alpha = 1$ is the real root. Therefore, we have only $1 + \alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4} = 0 \cdots \cdots \left( 2 \right)$. Now from the equation $\left( 2 \right)$, we can write
$\alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4} = - 1$
$ \Rightarrow \left( {\alpha + {\alpha ^4}} \right) + \left( {{\alpha ^2} + {\alpha ^3}} \right) = - 1 \cdots \cdots \left( 3 \right)$
From equation $\left( 3 \right)$, we can say that the sum of two roots $\left( {\alpha + {\alpha ^4}} \right)$ and $\left( {{\alpha ^2} + {\alpha ^3}} \right)$ is $ - 1$.
Let us multiply by $\alpha $ on both sides of the equation $\left( 1 \right)$. Therefore, we get ${\alpha ^6} = \alpha $ and ${\alpha ^7} = {\alpha ^2}$.
Let us find the product of two roots $\left( {\alpha + {\alpha ^4}} \right)$ and $\left( {{\alpha ^2} + {\alpha ^3}} \right)$ . Therefore, we get
$\left( {\alpha + {\alpha ^4}} \right)\left( {{\alpha ^2} + {\alpha ^3}} \right)$
$ = {\alpha ^3} + {\alpha ^4} + {\alpha ^6} + {\alpha ^7}$
$ = {\alpha ^3} + {\alpha ^4} + \alpha + {\alpha ^2}\quad \left[ {\because {\alpha ^6} = \alpha ,{\alpha ^7} = {\alpha ^2}} \right]$
$ = \alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4}$
$ = - 1$
Note that here we write $\alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4} = - 1$ from equation $\left( 2 \right)$.
Now we have the following information:
$\left( 1 \right)$ The sum of two roots $\left( {\alpha + {\alpha ^4}} \right)$ and $\left( {{\alpha ^2} + {\alpha ^3}} \right)$ is $ - 1$.
$\left( 2 \right)$ The product of two roots $\left( {\alpha + {\alpha ^4}} \right)$ and $\left( {{\alpha ^2} + {\alpha ^3}} \right)$ is $ - 1$.
If the sum and product of two roots is known then we can say that the quadratic equation will be
${x^2} - $ (sum of roots) $x + $ (product of roots) $ = 0$
Therefore, the required equation is
${x^2} - \left( { - 1} \right)x + \left( { - 1} \right) = 0$
$ \Rightarrow {x^2} + x - 1 = 0$
Therefore, if $\alpha $ is an imaginary root of ${x^5} - 1 = 0$ then the equation is ${x^2} + x - 1 = 0$ whose roots are $\alpha + {\alpha ^4}$ and ${\alpha ^2} + {\alpha ^3}$.
Therefore, option B is true.
Note: The standard form of quadratic equation is $a{x^2} + bx + c = 0$ where $a \ne 0$. Every quadratic equation has exactly two roots. For the roots of quadratic equation, there are three possible cases:
$\left( 1 \right)$ Roots are real and distinct $\left( 2 \right)$ Roots are real and equal $\left( 3 \right)$ Roots are imaginary numbers.
Recently Updated Pages
How do you convert r6sec theta into Cartesian form class 10 maths CBSE

How do you solve dfrac5y3dfracy+72y6+1 and find any class 10 maths CBSE

If sin A+B1 and cos AB1 0circ le left A+B rightle 90circ class 10 maths CBSE

On the number line 10 is to the of zero class 10 maths CBSE

How do you solve 5xge 30 class 10 maths CBSE

In the following sentence supply a verb in agreement class 10 english CBSE

Trending doubts
Write an application to the principal requesting five class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the median of the first 10 natural numbers class 10 maths CBSE

Write examples of herbivores carnivores and omnivo class 10 biology CBSE
