
If $\alpha \ and\ \beta $ are the zeros of the quadratic polynomial \[f\left( x \right) = {{x}^{2}}-px+q\], find the value of \[\dfrac{{{\alpha }^{2}}}{{{\beta }^{2}}}+\dfrac{{{\beta }^{2}}}{{{\alpha }^{2}}}=\dfrac{{{p}^{4}}}{{{q}^{2}}}-\dfrac{4{{p}^{2}}}{q}+2\].
Answer
583.2k+ views
Hint: We will be using the concept of quadratic equations to solve the problem. We will be using sum of roots and product of roots to further simplify the problem.
Complete Step-by-Step solution:
Now, we have been given $\alpha \ and\ \beta $are the zeros of the quadratic polynomial\[f\left( x \right)={{x}^{2}}-px+q\]. We have to find the value of\[\dfrac{{{\alpha }^{2}}}{{{\beta }^{2}}}+\dfrac{{{\beta }^{2}}}{{{\alpha }^{2}}}=\dfrac{{{p}^{4}}}{{{q}^{2}}}-\dfrac{4{{p}^{2}}}{q}+2\].
Now, to find this value we will be using the sum of roots and product of roots. We know that in a quadratic equation $a{{x}^{2}}+bx+c=0$.
$\begin{align}
& \text{sum of roots }=\dfrac{-b}{a} \\
& \text{product of roots }=\dfrac{c}{a} \\
\end{align}$
Therefore, in \[f\left( x \right)={{x}^{2}}-px+q\]
$\begin{align}
& \alpha +\beta =\text{sum of roots }=-\left( -p \right)..........\left( 1 \right) \\
& \alpha \beta \ \text{=}\ \text{product of roots }=q...........\left( 2 \right) \\
\end{align}$
Now, we will take LHS and prove it to be equal to RHS.
In LHS we have,
\[\dfrac{{{\alpha }^{2}}}{{{\beta }^{2}}}+\dfrac{{{\beta }^{2}}}{{{\alpha }^{2}}}=\dfrac{{{\alpha }^{4}}+{{\beta }^{4}}}{{{\left( \alpha \beta \right)}^{2}}}.........\left( 3 \right)\]
Now, we know that,
${{\left( {{a}^{2}}+{{b}^{2}} \right)}^{2}}={{a}^{4}}+{{b}^{4}}+2{{a}^{2}}{{b}^{2}}$
Substituting $a=\alpha \ and\ b=\beta $, we have,
$\begin{align}
& {{\left( {{\alpha }^{2}}+{{\beta }^{2}} \right)}^{2}}={{\alpha }^{4}}+{{\beta }^{4}}+2{{\alpha }^{2}}{{\beta }^{2}} \\
& {{\alpha }^{4}}+{{\beta }^{4}}={{\left( {{\alpha }^{2}}+{{\beta }^{2}} \right)}^{2}}-2{{\alpha }^{2}}{{\beta }^{2}}.........\left( 4 \right) \\
\end{align}$
Also, we know that,
${{\left( \alpha +\beta \right)}^{2}}={{\alpha }^{2}}+{{\beta }^{2}}+2\alpha \beta $
Therefore,
${{\left( \alpha +\beta \right)}^{2}}-2\alpha \beta ={{\alpha }^{2}}+{{\beta }^{2}}$
Now, substituting this in (4) we have,
${{\alpha }^{4}}+{{\beta }^{4}}={{\left( {{\left( \alpha +\beta \right)}^{2}}-2\alpha \beta \right)}^{2}}-2{{\left( \alpha \beta \right)}^{2}}$
Also, we will substitute this value of ${{\alpha }^{4}}+{{\beta }^{4}}$ in (3). So, that we have,
\[\dfrac{{{\alpha }^{2}}}{{{\beta }^{2}}}+\dfrac{{{\beta }^{2}}}{{{\alpha }^{2}}}=\dfrac{{{\left( {{\left( \alpha +\beta \right)}^{2}}-2\alpha \beta \right)}^{2}}-2{{\left( \alpha \beta \right)}^{2}}}{{{\left( \alpha \beta \right)}^{2}}}\]
Now, we will substitute the value of $\alpha +\beta \ and\ \alpha \beta $ from (1) and (2). So, we have,
$\begin{align}
& =\dfrac{{{\left( {{\left( p \right)}^{2}}-2q \right)}^{2}}-2{{\left( q \right)}^{2}}}{{{q}^{2}}} \\
& =\dfrac{{{\left( {{p}^{2}}-2q \right)}^{2}}-2{{q}^{2}}}{{{q}^{2}}} \\
\end{align}$
Now, we will use the algebraic identity that
${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$
So, that we have,
$\begin{align}
& =\dfrac{{{p}^{4}}+4{{q}^{2}}-4{{p}^{2}}q-2{{q}^{2}}}{{{q}^{2}}} \\
& =\dfrac{{{p}^{4}}-4{{p}^{2}}q+2{{q}^{2}}}{{{q}^{2}}} \\
& \dfrac{{{\alpha }^{2}}}{{{\beta }^{2}}}+\dfrac{{{\beta }^{2}}}{{{\alpha }^{2}}}=\dfrac{{{p}^{4}}}{{{q}^{2}}}-\dfrac{4{{p}^{2}}}{q}+2 \\
\end{align}$
Since we have LHS = RHS.
Hence Proved.
Note: To solve these types of questions one must know how to find the relation between sum of roots, product of roots and coefficient of quadratic equation.
$\begin{align}
& \text{sum of roots }=\dfrac{-b}{a} \\
& \text{product of roots }=\dfrac{c}{a} \\
\end{align}$
Complete Step-by-Step solution:
Now, we have been given $\alpha \ and\ \beta $are the zeros of the quadratic polynomial\[f\left( x \right)={{x}^{2}}-px+q\]. We have to find the value of\[\dfrac{{{\alpha }^{2}}}{{{\beta }^{2}}}+\dfrac{{{\beta }^{2}}}{{{\alpha }^{2}}}=\dfrac{{{p}^{4}}}{{{q}^{2}}}-\dfrac{4{{p}^{2}}}{q}+2\].
Now, to find this value we will be using the sum of roots and product of roots. We know that in a quadratic equation $a{{x}^{2}}+bx+c=0$.
$\begin{align}
& \text{sum of roots }=\dfrac{-b}{a} \\
& \text{product of roots }=\dfrac{c}{a} \\
\end{align}$
Therefore, in \[f\left( x \right)={{x}^{2}}-px+q\]
$\begin{align}
& \alpha +\beta =\text{sum of roots }=-\left( -p \right)..........\left( 1 \right) \\
& \alpha \beta \ \text{=}\ \text{product of roots }=q...........\left( 2 \right) \\
\end{align}$
Now, we will take LHS and prove it to be equal to RHS.
In LHS we have,
\[\dfrac{{{\alpha }^{2}}}{{{\beta }^{2}}}+\dfrac{{{\beta }^{2}}}{{{\alpha }^{2}}}=\dfrac{{{\alpha }^{4}}+{{\beta }^{4}}}{{{\left( \alpha \beta \right)}^{2}}}.........\left( 3 \right)\]
Now, we know that,
${{\left( {{a}^{2}}+{{b}^{2}} \right)}^{2}}={{a}^{4}}+{{b}^{4}}+2{{a}^{2}}{{b}^{2}}$
Substituting $a=\alpha \ and\ b=\beta $, we have,
$\begin{align}
& {{\left( {{\alpha }^{2}}+{{\beta }^{2}} \right)}^{2}}={{\alpha }^{4}}+{{\beta }^{4}}+2{{\alpha }^{2}}{{\beta }^{2}} \\
& {{\alpha }^{4}}+{{\beta }^{4}}={{\left( {{\alpha }^{2}}+{{\beta }^{2}} \right)}^{2}}-2{{\alpha }^{2}}{{\beta }^{2}}.........\left( 4 \right) \\
\end{align}$
Also, we know that,
${{\left( \alpha +\beta \right)}^{2}}={{\alpha }^{2}}+{{\beta }^{2}}+2\alpha \beta $
Therefore,
${{\left( \alpha +\beta \right)}^{2}}-2\alpha \beta ={{\alpha }^{2}}+{{\beta }^{2}}$
Now, substituting this in (4) we have,
${{\alpha }^{4}}+{{\beta }^{4}}={{\left( {{\left( \alpha +\beta \right)}^{2}}-2\alpha \beta \right)}^{2}}-2{{\left( \alpha \beta \right)}^{2}}$
Also, we will substitute this value of ${{\alpha }^{4}}+{{\beta }^{4}}$ in (3). So, that we have,
\[\dfrac{{{\alpha }^{2}}}{{{\beta }^{2}}}+\dfrac{{{\beta }^{2}}}{{{\alpha }^{2}}}=\dfrac{{{\left( {{\left( \alpha +\beta \right)}^{2}}-2\alpha \beta \right)}^{2}}-2{{\left( \alpha \beta \right)}^{2}}}{{{\left( \alpha \beta \right)}^{2}}}\]
Now, we will substitute the value of $\alpha +\beta \ and\ \alpha \beta $ from (1) and (2). So, we have,
$\begin{align}
& =\dfrac{{{\left( {{\left( p \right)}^{2}}-2q \right)}^{2}}-2{{\left( q \right)}^{2}}}{{{q}^{2}}} \\
& =\dfrac{{{\left( {{p}^{2}}-2q \right)}^{2}}-2{{q}^{2}}}{{{q}^{2}}} \\
\end{align}$
Now, we will use the algebraic identity that
${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$
So, that we have,
$\begin{align}
& =\dfrac{{{p}^{4}}+4{{q}^{2}}-4{{p}^{2}}q-2{{q}^{2}}}{{{q}^{2}}} \\
& =\dfrac{{{p}^{4}}-4{{p}^{2}}q+2{{q}^{2}}}{{{q}^{2}}} \\
& \dfrac{{{\alpha }^{2}}}{{{\beta }^{2}}}+\dfrac{{{\beta }^{2}}}{{{\alpha }^{2}}}=\dfrac{{{p}^{4}}}{{{q}^{2}}}-\dfrac{4{{p}^{2}}}{q}+2 \\
\end{align}$
Since we have LHS = RHS.
Hence Proved.
Note: To solve these types of questions one must know how to find the relation between sum of roots, product of roots and coefficient of quadratic equation.
$\begin{align}
& \text{sum of roots }=\dfrac{-b}{a} \\
& \text{product of roots }=\dfrac{c}{a} \\
\end{align}$
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Tropical deciduous trees shed their leaves in the dry class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write a letter to the principal requesting him to grant class 10 english CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE

