
If \[\alpha \] and \[\beta \] are the roots of the equation \[{x^2} - p(x + 1) - c = 0\] then the numerical value of \[\dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}} = ?\]
Answer
454.8k+ views
Hint: In the given question, the roots of a quadratic equation is given and we are asked to find the value of \[\dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}}\]. As we know, standard form of an quadratic equation is \[a{x^2} + bx + c\], where \[a\], \[b\] and \[c\] are the coefficients and the quadratic equation in term of roots is given by: \[{x^2} - \left( {{\text{sum of the roots}}} \right)x + \left( {{\text{product of the roots}}} \right) = 0\]. Using this we will find \[c\]. Then we will substitute this \[c\] in the given expression to find its value.
Complete step by step answer:
Given, \[{x^2} - p(x + 1) - c = 0\]. \[\alpha \] and \[\beta \] are the roots of the equation. We have to find the numerical value of \[\dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}}\].
The given quadratic equation is \[{x^2} - p(x + 1) - c = 0\] i.e., \[{x^2} - px - \left( {p + c} \right) = 0 - - - (1)\].
The roots of this quadratic equation are \[\alpha \] and \[\beta \].
As we know, a quadratic equation is of form:
\[{x^2} - \left( {{\text{sum of the roots}}} \right)x + \left( {{\text{product of the roots}}} \right) = 0\]
By applying this in the given quadratic equation, we get the equation the as
\[ \Rightarrow {x^2} - \left( {\alpha + \beta } \right)x + \alpha \beta = 0 - - - (2)\]
\[(1)\] and \[(2)\] represents the same equation, therefore on comparing we get
\[ \Rightarrow \alpha + \beta = p\] and \[\alpha \beta = - \left( {p + c} \right)\]
On solving, we get
\[ \Rightarrow c = - \alpha - \beta - \alpha \beta \]
Now putting the value of \[c\] in \[\dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}}\], we get
\[ \Rightarrow \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}} = \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha - \alpha - \beta - \alpha \beta }} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta - \alpha - \beta - \alpha \beta }}\]
On simplifying, we get
\[ \Rightarrow \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}} = \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + \alpha - \beta - \alpha \beta }} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + \beta - \alpha - \alpha \beta }}\]
On taking common, we get
\[\dfrac{{{\alpha ^2} + 2\alpha + 1}}{{\alpha \left( {\alpha + 1} \right) - \beta \left( {1 + \alpha } \right)}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{\beta \left( {\beta + 1} \right) - \alpha \left( {1 + \beta } \right)}}\]
Again, on taking common, we get
\[ \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{\left( {\alpha + 1} \right)\left( {\alpha - \beta } \right)}} - \dfrac{{{\beta ^2} + 2\beta + 1}}{{\left( {\beta + 1} \right)\left( {\alpha - \beta } \right)}}\]
Using the identity \[{a^2} + 2ab + {b^2} = {\left( {a + b} \right)^2}\], we get
\[ \Rightarrow \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}} = \dfrac{{{{\left( {\alpha + 1} \right)}^2}}}{{\left( {\alpha + 1} \right)\left( {\alpha - \beta } \right)}} - \dfrac{{{{\left( {\beta + 1} \right)}^2}}}{{\left( {\beta + 1} \right)\left( {\alpha - \beta } \right)}}\]
Cancelling the common terms from the numerator and the denominator, we get
\[ \dfrac{{\left( {\alpha + 1} \right)}}{{\left( {\alpha - \beta } \right)}} - \dfrac{{\left( {\beta + 1} \right)}}{{\left( {\alpha - \beta } \right)}}\]
\[ \Rightarrow \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}} = \dfrac{{\left( {\alpha + 1} \right)}}{{\left( {\alpha - \beta } \right)}} - \dfrac{{\left( {\beta + 1} \right)}}{{\left( {\alpha - \beta } \right)}}\]
Taking \[\dfrac{1}{{\left( {\alpha - \beta } \right)}}\] common, we get
\[ \Rightarrow \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}} = \dfrac{1}{{\left( {\alpha - \beta } \right)}}\left( {\alpha + 1 - \beta - 1} \right)\]
On simplifying, we get
\[ \Rightarrow \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}} = \dfrac{1}{{\left( {\alpha - \beta } \right)}}\left( {\alpha - \beta } \right)\]
On further simplification, we get
\[ \Rightarrow \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}} = 1\]
Therefore, the numerical value of \[\dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}}\] is \[1\].
Note: \[{x^2} - p(x + 1) - c = 0\] is a quadratic equation. A quadratic equation function may have one, two, or zero roots. Roots are also called the x-intercept or zeroes. Also, the y-coordinate of any points lying on the x-axis is zero. So, to find the roots of a quadratic function, we set \[f(x) = 0\].
Complete step by step answer:
Given, \[{x^2} - p(x + 1) - c = 0\]. \[\alpha \] and \[\beta \] are the roots of the equation. We have to find the numerical value of \[\dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}}\].
The given quadratic equation is \[{x^2} - p(x + 1) - c = 0\] i.e., \[{x^2} - px - \left( {p + c} \right) = 0 - - - (1)\].
The roots of this quadratic equation are \[\alpha \] and \[\beta \].
As we know, a quadratic equation is of form:
\[{x^2} - \left( {{\text{sum of the roots}}} \right)x + \left( {{\text{product of the roots}}} \right) = 0\]
By applying this in the given quadratic equation, we get the equation the as
\[ \Rightarrow {x^2} - \left( {\alpha + \beta } \right)x + \alpha \beta = 0 - - - (2)\]
\[(1)\] and \[(2)\] represents the same equation, therefore on comparing we get
\[ \Rightarrow \alpha + \beta = p\] and \[\alpha \beta = - \left( {p + c} \right)\]
On solving, we get
\[ \Rightarrow c = - \alpha - \beta - \alpha \beta \]
Now putting the value of \[c\] in \[\dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}}\], we get
\[ \Rightarrow \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}} = \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha - \alpha - \beta - \alpha \beta }} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta - \alpha - \beta - \alpha \beta }}\]
On simplifying, we get
\[ \Rightarrow \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}} = \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + \alpha - \beta - \alpha \beta }} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + \beta - \alpha - \alpha \beta }}\]
On taking common, we get
\[\dfrac{{{\alpha ^2} + 2\alpha + 1}}{{\alpha \left( {\alpha + 1} \right) - \beta \left( {1 + \alpha } \right)}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{\beta \left( {\beta + 1} \right) - \alpha \left( {1 + \beta } \right)}}\]
Again, on taking common, we get
\[ \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{\left( {\alpha + 1} \right)\left( {\alpha - \beta } \right)}} - \dfrac{{{\beta ^2} + 2\beta + 1}}{{\left( {\beta + 1} \right)\left( {\alpha - \beta } \right)}}\]
Using the identity \[{a^2} + 2ab + {b^2} = {\left( {a + b} \right)^2}\], we get
\[ \Rightarrow \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}} = \dfrac{{{{\left( {\alpha + 1} \right)}^2}}}{{\left( {\alpha + 1} \right)\left( {\alpha - \beta } \right)}} - \dfrac{{{{\left( {\beta + 1} \right)}^2}}}{{\left( {\beta + 1} \right)\left( {\alpha - \beta } \right)}}\]
Cancelling the common terms from the numerator and the denominator, we get
\[ \dfrac{{\left( {\alpha + 1} \right)}}{{\left( {\alpha - \beta } \right)}} - \dfrac{{\left( {\beta + 1} \right)}}{{\left( {\alpha - \beta } \right)}}\]
\[ \Rightarrow \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}} = \dfrac{{\left( {\alpha + 1} \right)}}{{\left( {\alpha - \beta } \right)}} - \dfrac{{\left( {\beta + 1} \right)}}{{\left( {\alpha - \beta } \right)}}\]
Taking \[\dfrac{1}{{\left( {\alpha - \beta } \right)}}\] common, we get
\[ \Rightarrow \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}} = \dfrac{1}{{\left( {\alpha - \beta } \right)}}\left( {\alpha + 1 - \beta - 1} \right)\]
On simplifying, we get
\[ \Rightarrow \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}} = \dfrac{1}{{\left( {\alpha - \beta } \right)}}\left( {\alpha - \beta } \right)\]
On further simplification, we get
\[ \Rightarrow \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}} = 1\]
Therefore, the numerical value of \[\dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}}\] is \[1\].
Note: \[{x^2} - p(x + 1) - c = 0\] is a quadratic equation. A quadratic equation function may have one, two, or zero roots. Roots are also called the x-intercept or zeroes. Also, the y-coordinate of any points lying on the x-axis is zero. So, to find the roots of a quadratic function, we set \[f(x) = 0\].
Recently Updated Pages
How do you convert r6sec theta into Cartesian form class 10 maths CBSE

How do you solve dfrac5y3dfracy+72y6+1 and find any class 10 maths CBSE

If sin A+B1 and cos AB1 0circ le left A+B rightle 90circ class 10 maths CBSE

On the number line 10 is to the of zero class 10 maths CBSE

How do you solve 5xge 30 class 10 maths CBSE

In the following sentence supply a verb in agreement class 10 english CBSE

Trending doubts
Write an application to the principal requesting five class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the median of the first 10 natural numbers class 10 maths CBSE

Write examples of herbivores carnivores and omnivo class 10 biology CBSE
