
When will $\gamma \text{- decay}$ take place?
A. Prior to alpha decay.
B. Prior to beta decay.
C. Prior to positron decay.
D. Due to the-excitement of nuclear levels.
Answer
504.9k+ views
Hint: We must know that radioactive elements are unstable and emit radiation to achieve states of greater stability. So, the parent nucleus emits $\alpha, \beta \text{ and }\gamma $ particles to release the excess energy. So, the emission of $\gamma $- particles to achieve stability by a nucleus is known as $\gamma \text{- decay}$.
Complete answer:
Basically, the emission photons by means of $\gamma \text{- rays}$ from a radioactive nucleus is known as $\gamma \text{- decay}$. During a $\gamma \text{- decay}$, an excited daughter nucleus releases high energy photons in the range of MeV and de-excite to a stable energy level.
That means, after $\alpha \text{ and }\beta $ decay, the daughter nucleus will be still in an excited state. So, for achieving its greater stability, it emits one or more $\gamma \text{- ray}$ photons.
Now, the general expression for $\gamma \text{- decay}$ is,
$_{Z}{{X}^{A}}{{\to }_{Z}}{{Y}^{A}}+\gamma $
Where, X is the daughter nuclei formed by other decays and Y is the stable product after $\gamma \text{- decay}$.
As an example, the $\beta \text{- decay}$of $_{27}C{{o}^{60}}$ transforms into an exciting $_{28}N{{i}^{60}}$ nucleus. It reaches the ground state by emitting $\gamma \text{- rays}$. The representation for this reaction will be as follows,
\[\begin{align}
& _{27}C{{o}^{60}}{{\to }_{28}}N{{i}^{{{60}^{**}}}}{{+}_{-1}}{{e}^{0}} \\
& _{27}C{{o}^{60}}{{\to }_{28}}N{{i}^{{{60}^{*}}}}+{{E}_{\gamma }}\text{ (=1}\text{.17MeV)} \\
& _{27}C{{o}^{60}}{{\to }_{28}}Ni+{{E}_{\gamma }}\text{ (=1}\text{.33MeV)} \\
\end{align}\]
Here, \[{{E}_{\gamma }}\] is the energy emitted by $\gamma \text{- decay}$.
Now, we can conclude that $\gamma \text{- decay}$ will only take place after $\alpha \text{ and }\beta $ decay. So, $\gamma \text{- decay}$ occurs when an excited nucleus makes a transition from a higher energy level to a lower state of energy. That means due to the-excitement of nuclear levels.
So, the correct answer is “Option D”.
Note:
We must know that as gamma rays are electromagnetic waves, they travel with the speed of light. Gamma rays are used in radiotherapy to treat tumors and cancers, sterilizing medical equipment, etc. Also, they are used to look for distant gamma rays sources in astronomy and to develop nuclear reactors and bombs.
Complete answer:
Basically, the emission photons by means of $\gamma \text{- rays}$ from a radioactive nucleus is known as $\gamma \text{- decay}$. During a $\gamma \text{- decay}$, an excited daughter nucleus releases high energy photons in the range of MeV and de-excite to a stable energy level.
That means, after $\alpha \text{ and }\beta $ decay, the daughter nucleus will be still in an excited state. So, for achieving its greater stability, it emits one or more $\gamma \text{- ray}$ photons.
Now, the general expression for $\gamma \text{- decay}$ is,
$_{Z}{{X}^{A}}{{\to }_{Z}}{{Y}^{A}}+\gamma $
Where, X is the daughter nuclei formed by other decays and Y is the stable product after $\gamma \text{- decay}$.
As an example, the $\beta \text{- decay}$of $_{27}C{{o}^{60}}$ transforms into an exciting $_{28}N{{i}^{60}}$ nucleus. It reaches the ground state by emitting $\gamma \text{- rays}$. The representation for this reaction will be as follows,
\[\begin{align}
& _{27}C{{o}^{60}}{{\to }_{28}}N{{i}^{{{60}^{**}}}}{{+}_{-1}}{{e}^{0}} \\
& _{27}C{{o}^{60}}{{\to }_{28}}N{{i}^{{{60}^{*}}}}+{{E}_{\gamma }}\text{ (=1}\text{.17MeV)} \\
& _{27}C{{o}^{60}}{{\to }_{28}}Ni+{{E}_{\gamma }}\text{ (=1}\text{.33MeV)} \\
\end{align}\]
Here, \[{{E}_{\gamma }}\] is the energy emitted by $\gamma \text{- decay}$.
Now, we can conclude that $\gamma \text{- decay}$ will only take place after $\alpha \text{ and }\beta $ decay. So, $\gamma \text{- decay}$ occurs when an excited nucleus makes a transition from a higher energy level to a lower state of energy. That means due to the-excitement of nuclear levels.
So, the correct answer is “Option D”.
Note:
We must know that as gamma rays are electromagnetic waves, they travel with the speed of light. Gamma rays are used in radiotherapy to treat tumors and cancers, sterilizing medical equipment, etc. Also, they are used to look for distant gamma rays sources in astronomy and to develop nuclear reactors and bombs.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
When was the first election held in India a 194748 class 12 sst CBSE

What are the major means of transport Explain each class 12 social science CBSE

Savarkar was released from jail in the year A1889 B1905 class 12 social science CBSE

State Snells first and second law of refraction class 12 physics CBSE

How do you convert from joules to electron volts class 12 physics CBSE

What is the importance of evolution class 12 biology CBSE
