
When will $\gamma \text{- decay}$ take place?
A. Prior to alpha decay.
B. Prior to beta decay.
C. Prior to positron decay.
D. Due to the-excitement of nuclear levels.
Answer
488.7k+ views
Hint: We must know that radioactive elements are unstable and emit radiation to achieve states of greater stability. So, the parent nucleus emits $\alpha, \beta \text{ and }\gamma $ particles to release the excess energy. So, the emission of $\gamma $- particles to achieve stability by a nucleus is known as $\gamma \text{- decay}$.
Complete answer:
Basically, the emission photons by means of $\gamma \text{- rays}$ from a radioactive nucleus is known as $\gamma \text{- decay}$. During a $\gamma \text{- decay}$, an excited daughter nucleus releases high energy photons in the range of MeV and de-excite to a stable energy level.
That means, after $\alpha \text{ and }\beta $ decay, the daughter nucleus will be still in an excited state. So, for achieving its greater stability, it emits one or more $\gamma \text{- ray}$ photons.
Now, the general expression for $\gamma \text{- decay}$ is,
$_{Z}{{X}^{A}}{{\to }_{Z}}{{Y}^{A}}+\gamma $
Where, X is the daughter nuclei formed by other decays and Y is the stable product after $\gamma \text{- decay}$.
As an example, the $\beta \text{- decay}$of $_{27}C{{o}^{60}}$ transforms into an exciting $_{28}N{{i}^{60}}$ nucleus. It reaches the ground state by emitting $\gamma \text{- rays}$. The representation for this reaction will be as follows,
\[\begin{align}
& _{27}C{{o}^{60}}{{\to }_{28}}N{{i}^{{{60}^{**}}}}{{+}_{-1}}{{e}^{0}} \\
& _{27}C{{o}^{60}}{{\to }_{28}}N{{i}^{{{60}^{*}}}}+{{E}_{\gamma }}\text{ (=1}\text{.17MeV)} \\
& _{27}C{{o}^{60}}{{\to }_{28}}Ni+{{E}_{\gamma }}\text{ (=1}\text{.33MeV)} \\
\end{align}\]
Here, \[{{E}_{\gamma }}\] is the energy emitted by $\gamma \text{- decay}$.
Now, we can conclude that $\gamma \text{- decay}$ will only take place after $\alpha \text{ and }\beta $ decay. So, $\gamma \text{- decay}$ occurs when an excited nucleus makes a transition from a higher energy level to a lower state of energy. That means due to the-excitement of nuclear levels.
So, the correct answer is “Option D”.
Note:
We must know that as gamma rays are electromagnetic waves, they travel with the speed of light. Gamma rays are used in radiotherapy to treat tumors and cancers, sterilizing medical equipment, etc. Also, they are used to look for distant gamma rays sources in astronomy and to develop nuclear reactors and bombs.
Complete answer:
Basically, the emission photons by means of $\gamma \text{- rays}$ from a radioactive nucleus is known as $\gamma \text{- decay}$. During a $\gamma \text{- decay}$, an excited daughter nucleus releases high energy photons in the range of MeV and de-excite to a stable energy level.
That means, after $\alpha \text{ and }\beta $ decay, the daughter nucleus will be still in an excited state. So, for achieving its greater stability, it emits one or more $\gamma \text{- ray}$ photons.
Now, the general expression for $\gamma \text{- decay}$ is,
$_{Z}{{X}^{A}}{{\to }_{Z}}{{Y}^{A}}+\gamma $
Where, X is the daughter nuclei formed by other decays and Y is the stable product after $\gamma \text{- decay}$.
As an example, the $\beta \text{- decay}$of $_{27}C{{o}^{60}}$ transforms into an exciting $_{28}N{{i}^{60}}$ nucleus. It reaches the ground state by emitting $\gamma \text{- rays}$. The representation for this reaction will be as follows,
\[\begin{align}
& _{27}C{{o}^{60}}{{\to }_{28}}N{{i}^{{{60}^{**}}}}{{+}_{-1}}{{e}^{0}} \\
& _{27}C{{o}^{60}}{{\to }_{28}}N{{i}^{{{60}^{*}}}}+{{E}_{\gamma }}\text{ (=1}\text{.17MeV)} \\
& _{27}C{{o}^{60}}{{\to }_{28}}Ni+{{E}_{\gamma }}\text{ (=1}\text{.33MeV)} \\
\end{align}\]
Here, \[{{E}_{\gamma }}\] is the energy emitted by $\gamma \text{- decay}$.
Now, we can conclude that $\gamma \text{- decay}$ will only take place after $\alpha \text{ and }\beta $ decay. So, $\gamma \text{- decay}$ occurs when an excited nucleus makes a transition from a higher energy level to a lower state of energy. That means due to the-excitement of nuclear levels.
So, the correct answer is “Option D”.
Note:
We must know that as gamma rays are electromagnetic waves, they travel with the speed of light. Gamma rays are used in radiotherapy to treat tumors and cancers, sterilizing medical equipment, etc. Also, they are used to look for distant gamma rays sources in astronomy and to develop nuclear reactors and bombs.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 4 Maths: Engaging Questions & Answers for Success

Trending doubts
Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE
