For a $p$ electron, the orbital angular momentum is:
A. $\dfrac{\sqrt{6}h}{2\pi }$
B. $\dfrac{\sqrt{2}h}{2\pi }$
C. $\dfrac{h}{2\pi }$
D. $\dfrac{2h}{2\pi }$
Answer
Verified
490.2k+ views
Hint: The orbital angular momentum of an electron is an integral multiple of $\dfrac{h}{2\pi }$ as explained by Bohr’s atomic theory model. The integral number depends on the azimuthal quantum number $\left( l \right)$ of the electron. The azimuthal quantum numbers of s,p,d and f electrons are 0,1,2 and 3 respectively.
Formula used:
The orbital angular momentum of an electron with azimuthal quantum number $l$ is given by
$\sqrt{l\left( l+1 \right)}\dfrac{h}{2\pi }$
Where h is the planck's constant equal to $6.626\times {{10}^{-34}}J.s$
Complete Step-by-Step solution:
As the electron revolves in an orbital around the nucleus according to the Bohr atomic theory, it possesses an orbital angular momentum. This orbital angular momentum depends on the azimuthal quantum number $\left( l \right)$ of the electron. The azimuthal quantum numbers of s,p,d and f electrons are 0,1,2 and 3 respectively.
The orbital angular momentum of an electron with azimuthal quantum number $l$ is given by
$\sqrt{l\left( l+1 \right)}\dfrac{h}{2\pi }$ ---(1)
Where h is the planck's constant equal to $6.626\times {{10}^{-34}}J.s$
The azimuthal quantum number $\left( l \right)$ of a $p$ electron is $l=1$ . Hence, to find the orbital angular momentum of a $p$ electron, we have to put this value in equation (1),
Hence, doing so, we get,
Orbital angular momentum of $\text{p} \text{ electron = }\sqrt{1\left( 1+1 \right)}\dfrac{h}{2\pi }=\sqrt{1\left( 2 \right)}\dfrac{h}{2\pi }=\dfrac{\sqrt{2}h}{2\pi }$.
Hence, the required value of the orbital angular momentum is $\dfrac{\sqrt{2}h}{2\pi }$.
Hence, the correct option is B) $\dfrac{\sqrt{2}h}{2\pi }$.
Note: Due to the fact that an electron carries charge and revolves in a circular path around the nucleus according to the Bohr atomic theory, it also acts like a current carrying circular coil and hence also produces its own magnetic field. This can be measured in Bohr magneton.
It is almost obvious that the formula (1) is correct since d and f electrons which are situated further away from the nucleus must have a larger orbital angular momentum from simple mechanics. This is also true by the formula since d and f electrons have azimuthal quantum number values of 2 and 3 respectively which are more than that of s and p electrons (0 and 1 respectively).
Formula used:
The orbital angular momentum of an electron with azimuthal quantum number $l$ is given by
$\sqrt{l\left( l+1 \right)}\dfrac{h}{2\pi }$
Where h is the planck's constant equal to $6.626\times {{10}^{-34}}J.s$
Complete Step-by-Step solution:
As the electron revolves in an orbital around the nucleus according to the Bohr atomic theory, it possesses an orbital angular momentum. This orbital angular momentum depends on the azimuthal quantum number $\left( l \right)$ of the electron. The azimuthal quantum numbers of s,p,d and f electrons are 0,1,2 and 3 respectively.
The orbital angular momentum of an electron with azimuthal quantum number $l$ is given by
$\sqrt{l\left( l+1 \right)}\dfrac{h}{2\pi }$ ---(1)
Where h is the planck's constant equal to $6.626\times {{10}^{-34}}J.s$
The azimuthal quantum number $\left( l \right)$ of a $p$ electron is $l=1$ . Hence, to find the orbital angular momentum of a $p$ electron, we have to put this value in equation (1),
Hence, doing so, we get,
Orbital angular momentum of $\text{p} \text{ electron = }\sqrt{1\left( 1+1 \right)}\dfrac{h}{2\pi }=\sqrt{1\left( 2 \right)}\dfrac{h}{2\pi }=\dfrac{\sqrt{2}h}{2\pi }$.
Hence, the required value of the orbital angular momentum is $\dfrac{\sqrt{2}h}{2\pi }$.
Hence, the correct option is B) $\dfrac{\sqrt{2}h}{2\pi }$.
Note: Due to the fact that an electron carries charge and revolves in a circular path around the nucleus according to the Bohr atomic theory, it also acts like a current carrying circular coil and hence also produces its own magnetic field. This can be measured in Bohr magneton.
It is almost obvious that the formula (1) is correct since d and f electrons which are situated further away from the nucleus must have a larger orbital angular momentum from simple mechanics. This is also true by the formula since d and f electrons have azimuthal quantum number values of 2 and 3 respectively which are more than that of s and p electrons (0 and 1 respectively).
Recently Updated Pages
A uniform rod of length l and mass m is free to rotate class 10 physics CBSE
Solve the following pairs of linear equations by elimination class 10 maths CBSE
What could be the possible ones digits of the square class 10 maths CBSE
Where was the Great Bath found A Harappa B Mohenjodaro class 10 social science CBSE
PQ is a tangent to a circle with centre O at the point class 10 maths CBSE
The measures of two adjacent sides of a parallelogram class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE