
Find the square of 45.
Answer
525.3k+ views
Hint: We will first express the given number as a difference of two numbers. We will then apply a suitable algebraic identity to simplify the expression. We will further solve the equation to get the required answer. The square of a number is obtained by multiplying a number by itself.
Formula used:
\[{(a - b)^2} = {a^2} - 2ab + {b^2}\]
Complete step-by-step answer:
We are supposed to find the square of 45.
The square of any number can be obtained either by usual multiplication or by the application of appropriate identities.
To find the square of 45, we will apply the identity \[{(a - b)^2} = {a^2} - 2ab + {b^2}\].
For this, we need to write 45 as a difference of two numbers.
We can write 45 as \[45 = 50 - 5\].
So, \[a - b = 50 - 5\].
Here, \[a = 50\] and \[b = 5\].
Let us first find \[{a^2}\] i.e., \[{50^2}\].
\[{a^2} = {50^2} = 50 \times 50\]
Multiplying the terms, we get
\[ \Rightarrow {a^2} = 2500\] ……….\[(1)\]
Now, we will find \[2ab\]. So,
\[2ab = 2 \times 50 \times 5 = 500\] ……….\[(2)\]
Finally, let us find \[{b^2}\] i.e., \[{5^2}\].
\[{b^2} = {5^2} = 5 \times 5\]
Multiplying the terms, we get
\[ \Rightarrow {b^2} = 25\]……….\[(3)\]
Substituting equations \[(1)\], \[(2)\], and \[(3)\] in the identity \[{(a - b)^2} = {a^2} - 2ab + {b^2}\], we get
\[{45^2} = 2500 - 500 + 25\]
Adding and subtracting the terms, we get
\[ \Rightarrow {45^2} = 2025\]
Hence, the square of 45 is 2025.
Note: We can also solve the above problem by using the identity \[{(a + b)^2} = {a^2} + 2ab + {b^2}\].
To apply this, we will express 45 as a sum of two numbers.
We can write \[45\] as \[45 = 40 + 5\].
So, \[a + b = 40 + 5\].
Here, \[a = 40\] and \[b = 5\].
Let us first find \[{a^2}\] i.e., \[{40^2}\].
\[{a^2} = {40^2} = 40 \times 40\]
Multiplying the terms, we get
\[ \Rightarrow {a^2} = 1600\] ………. \[(4)\]
Now, we will find \[2ab\]. So,
\[2ab = 2 \times 40 \times 5 = 400\] ………. \[(5)\]
Finally, let us find \[{b^2}\] i.e., \[{5^2}\].
\[{b^2} = {5^2} = 5 \times 5\]
Multiplying the terms, we get
\[ \Rightarrow {b^2} = 25\]………. \[(6)\]
Substituting equations \[(4)\], \[(5)\], and \[(6)\] in the identity \[{(a + b)^2} = {a^2} + 2ab + {b^2}\], we get
\[{45^2} = 1600 + 400 + 25\]
Adding the terms, we get
\[ \Rightarrow {45^2} = 2025\]
Hence, the square of 45 is 2025.
Formula used:
\[{(a - b)^2} = {a^2} - 2ab + {b^2}\]
Complete step-by-step answer:
We are supposed to find the square of 45.
The square of any number can be obtained either by usual multiplication or by the application of appropriate identities.
To find the square of 45, we will apply the identity \[{(a - b)^2} = {a^2} - 2ab + {b^2}\].
For this, we need to write 45 as a difference of two numbers.
We can write 45 as \[45 = 50 - 5\].
So, \[a - b = 50 - 5\].
Here, \[a = 50\] and \[b = 5\].
Let us first find \[{a^2}\] i.e., \[{50^2}\].
\[{a^2} = {50^2} = 50 \times 50\]
Multiplying the terms, we get
\[ \Rightarrow {a^2} = 2500\] ……….\[(1)\]
Now, we will find \[2ab\]. So,
\[2ab = 2 \times 50 \times 5 = 500\] ……….\[(2)\]
Finally, let us find \[{b^2}\] i.e., \[{5^2}\].
\[{b^2} = {5^2} = 5 \times 5\]
Multiplying the terms, we get
\[ \Rightarrow {b^2} = 25\]……….\[(3)\]
Substituting equations \[(1)\], \[(2)\], and \[(3)\] in the identity \[{(a - b)^2} = {a^2} - 2ab + {b^2}\], we get
\[{45^2} = 2500 - 500 + 25\]
Adding and subtracting the terms, we get
\[ \Rightarrow {45^2} = 2025\]
Hence, the square of 45 is 2025.
Note: We can also solve the above problem by using the identity \[{(a + b)^2} = {a^2} + 2ab + {b^2}\].
To apply this, we will express 45 as a sum of two numbers.
We can write \[45\] as \[45 = 40 + 5\].
So, \[a + b = 40 + 5\].
Here, \[a = 40\] and \[b = 5\].
Let us first find \[{a^2}\] i.e., \[{40^2}\].
\[{a^2} = {40^2} = 40 \times 40\]
Multiplying the terms, we get
\[ \Rightarrow {a^2} = 1600\] ………. \[(4)\]
Now, we will find \[2ab\]. So,
\[2ab = 2 \times 40 \times 5 = 400\] ………. \[(5)\]
Finally, let us find \[{b^2}\] i.e., \[{5^2}\].
\[{b^2} = {5^2} = 5 \times 5\]
Multiplying the terms, we get
\[ \Rightarrow {b^2} = 25\]………. \[(6)\]
Substituting equations \[(4)\], \[(5)\], and \[(6)\] in the identity \[{(a + b)^2} = {a^2} + 2ab + {b^2}\], we get
\[{45^2} = 1600 + 400 + 25\]
Adding the terms, we get
\[ \Rightarrow {45^2} = 2025\]
Hence, the square of 45 is 2025.
Recently Updated Pages
You are awaiting your class 10th results Meanwhile class 7 english CBSE

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

Differentiate between weather and climate How do they class 7 social science CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE

State similarities and differences between the laboratory class 7 physics CBSE

The plural of Chief is Chieves A True B False class 7 english CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE
