
Find the square of 45.
Answer
476.4k+ views
Hint: We will first express the given number as a difference of two numbers. We will then apply a suitable algebraic identity to simplify the expression. We will further solve the equation to get the required answer. The square of a number is obtained by multiplying a number by itself.
Formula used:
\[{(a - b)^2} = {a^2} - 2ab + {b^2}\]
Complete step-by-step answer:
We are supposed to find the square of 45.
The square of any number can be obtained either by usual multiplication or by the application of appropriate identities.
To find the square of 45, we will apply the identity \[{(a - b)^2} = {a^2} - 2ab + {b^2}\].
For this, we need to write 45 as a difference of two numbers.
We can write 45 as \[45 = 50 - 5\].
So, \[a - b = 50 - 5\].
Here, \[a = 50\] and \[b = 5\].
Let us first find \[{a^2}\] i.e., \[{50^2}\].
\[{a^2} = {50^2} = 50 \times 50\]
Multiplying the terms, we get
\[ \Rightarrow {a^2} = 2500\] ……….\[(1)\]
Now, we will find \[2ab\]. So,
\[2ab = 2 \times 50 \times 5 = 500\] ……….\[(2)\]
Finally, let us find \[{b^2}\] i.e., \[{5^2}\].
\[{b^2} = {5^2} = 5 \times 5\]
Multiplying the terms, we get
\[ \Rightarrow {b^2} = 25\]……….\[(3)\]
Substituting equations \[(1)\], \[(2)\], and \[(3)\] in the identity \[{(a - b)^2} = {a^2} - 2ab + {b^2}\], we get
\[{45^2} = 2500 - 500 + 25\]
Adding and subtracting the terms, we get
\[ \Rightarrow {45^2} = 2025\]
Hence, the square of 45 is 2025.
Note: We can also solve the above problem by using the identity \[{(a + b)^2} = {a^2} + 2ab + {b^2}\].
To apply this, we will express 45 as a sum of two numbers.
We can write \[45\] as \[45 = 40 + 5\].
So, \[a + b = 40 + 5\].
Here, \[a = 40\] and \[b = 5\].
Let us first find \[{a^2}\] i.e., \[{40^2}\].
\[{a^2} = {40^2} = 40 \times 40\]
Multiplying the terms, we get
\[ \Rightarrow {a^2} = 1600\] ………. \[(4)\]
Now, we will find \[2ab\]. So,
\[2ab = 2 \times 40 \times 5 = 400\] ………. \[(5)\]
Finally, let us find \[{b^2}\] i.e., \[{5^2}\].
\[{b^2} = {5^2} = 5 \times 5\]
Multiplying the terms, we get
\[ \Rightarrow {b^2} = 25\]………. \[(6)\]
Substituting equations \[(4)\], \[(5)\], and \[(6)\] in the identity \[{(a + b)^2} = {a^2} + 2ab + {b^2}\], we get
\[{45^2} = 1600 + 400 + 25\]
Adding the terms, we get
\[ \Rightarrow {45^2} = 2025\]
Hence, the square of 45 is 2025.
Formula used:
\[{(a - b)^2} = {a^2} - 2ab + {b^2}\]
Complete step-by-step answer:
We are supposed to find the square of 45.
The square of any number can be obtained either by usual multiplication or by the application of appropriate identities.
To find the square of 45, we will apply the identity \[{(a - b)^2} = {a^2} - 2ab + {b^2}\].
For this, we need to write 45 as a difference of two numbers.
We can write 45 as \[45 = 50 - 5\].
So, \[a - b = 50 - 5\].
Here, \[a = 50\] and \[b = 5\].
Let us first find \[{a^2}\] i.e., \[{50^2}\].
\[{a^2} = {50^2} = 50 \times 50\]
Multiplying the terms, we get
\[ \Rightarrow {a^2} = 2500\] ……….\[(1)\]
Now, we will find \[2ab\]. So,
\[2ab = 2 \times 50 \times 5 = 500\] ……….\[(2)\]
Finally, let us find \[{b^2}\] i.e., \[{5^2}\].
\[{b^2} = {5^2} = 5 \times 5\]
Multiplying the terms, we get
\[ \Rightarrow {b^2} = 25\]……….\[(3)\]
Substituting equations \[(1)\], \[(2)\], and \[(3)\] in the identity \[{(a - b)^2} = {a^2} - 2ab + {b^2}\], we get
\[{45^2} = 2500 - 500 + 25\]
Adding and subtracting the terms, we get
\[ \Rightarrow {45^2} = 2025\]
Hence, the square of 45 is 2025.
Note: We can also solve the above problem by using the identity \[{(a + b)^2} = {a^2} + 2ab + {b^2}\].
To apply this, we will express 45 as a sum of two numbers.
We can write \[45\] as \[45 = 40 + 5\].
So, \[a + b = 40 + 5\].
Here, \[a = 40\] and \[b = 5\].
Let us first find \[{a^2}\] i.e., \[{40^2}\].
\[{a^2} = {40^2} = 40 \times 40\]
Multiplying the terms, we get
\[ \Rightarrow {a^2} = 1600\] ………. \[(4)\]
Now, we will find \[2ab\]. So,
\[2ab = 2 \times 40 \times 5 = 400\] ………. \[(5)\]
Finally, let us find \[{b^2}\] i.e., \[{5^2}\].
\[{b^2} = {5^2} = 5 \times 5\]
Multiplying the terms, we get
\[ \Rightarrow {b^2} = 25\]………. \[(6)\]
Substituting equations \[(4)\], \[(5)\], and \[(6)\] in the identity \[{(a + b)^2} = {a^2} + 2ab + {b^2}\], we get
\[{45^2} = 1600 + 400 + 25\]
Adding the terms, we get
\[ \Rightarrow {45^2} = 2025\]
Hence, the square of 45 is 2025.
Recently Updated Pages
Master Class 7 Science: Engaging Questions & Answers for Success

Master Class 7 English: Engaging Questions & Answers for Success

Master Class 7 Maths: Engaging Questions & Answers for Success

Master Class 7 Social Science: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Express the following as a fraction and simplify a class 7 maths CBSE

Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

The southernmost point of the Indian mainland is known class 7 social studies CBSE

Why are resources distributed unequally over the e class 7 social science CBSE

How many crores make 10 million class 7 maths CBSE

Find the largest number which divides 615 and 963 leaving class 7 maths CBSE

What is meant by Indian Standard Time Why do we need class 7 social science CBSE
