
Draw the graph of $ y = {x^2} + 2x - 3 $ and hence find the sum of roots of $ {x^2} - x - 6 = 0 $
Answer
524.7k+ views
Hint: In this question, we need to draw the graph of $ y = {x^2} + 2x - 3 $ and also, we need to determine the sum of roots of $ {x^2} - x - 6 = 0 $ . Here, we will determine the points of the equation $ y = {x^2} + 2x - 3 $ and plot the points in the graph. Then, using the formula of the sum of roots of a quadratic equation, we will determine the value of sum of roots.
Complete step-by-step answer:
Now, we will determine the points for the equation $ y = {x^2} + 2x - 3 $ ,
Let us consider $ x = 0 $ , then we have,
$ y = {\left( 0 \right)^2} + 2\left( 0 \right) - 3 $
$ y = - 3 $
Now, we got a points for the equation $ y = {x^2} + 2x - 3 $ , i.e., $ \left( {0, - 3} \right) $
Similarly, let us consider $ x = 1 $ , then we have,
$ y = {\left( 1 \right)^2} + 2\left( 1 \right) - 3 $
$ y = 1 + 2 - 3 $
$ y = 0 $
Therefore, the point is $ \left( {1,0} \right) $ .
Let $ x = - 1 $ , we have,
$ y = {\left( { - 1} \right)^2} + 2\left( { - 1} \right) - 3 $
$ y = 1 - 2 - 3 $
$ y = - 4 $
Therefore, the point is $ \left( { - 1, - 4} \right) $
Let $ x = 2 $ , we have,
$ y = {\left( 2 \right)^2} + 2\left( 2 \right) - 3 $
$ y = 4 + 4 - 3 $
$ y = 5 $
Therefore, the point is $ \left( {2,5} \right) $
Let $ x = - 2 $ , we have,
$ y = {\left( { - 2} \right)^2} + 2\left( { - 2} \right) - 3 $
$ y = 4 - 4 - 3 $
$ y = - 3 $
Therefore, the point is $ \left( { - 2, - 3} \right) $
Let $ x = 3 $ , we have,
$ y = {\left( 3 \right)^2} + 2\left( 3 \right) - 3 $
$ y = 9 - 6 - 3 $
$ y = 12 $
Therefore, the point is $ \left( {3,12} \right) $
Let $ x = - 3 $ , we have,
$ y = {\left( { - 3} \right)^2} + 2\left( { - 3} \right) - 3 $
$ y = 9 - 6 - 3 $
$ y = 0 $
Therefore, the point is $ \left( { - 3,0} \right) $
Now let us plot it graphically,
Now, we need to determine the sum of the roots of the equation $ {x^2} - x - 6 = 0 $ .
We know that, for a quadratic equation $ a{x^2} + bx + c = 0 $ ,
The sum of the roots= $ \dfrac{{ - b}}{a} $
And, the product of the roots= $ \dfrac{c}{a} $
Therefore,
$ {x^2} - \left( {sum\,of\,the\,roots} \right)x + \left( {product\,of\,the\,roots} \right) = 0 $
Therefore, by comparing $ {x^2} - x - 6 = 0 $ with the above equation, we have,
The sum of the equation= $ \dfrac{{ - \left( { - 1} \right)}}{1} $ $ = 1 $
Hence, the sum of roots of $ {x^2} - x - 6 = 0 $ is $ 1 $ .
So, the correct answer is “1”.
Note: It is important to note here that the sum of the roots of the quadratic equation is equal to the negation of the coefficient of the second term, divided by the leaving leading coefficient. The product of the roots of a quadratic equation is equal to the constant term, divided by the leading coefficient. In higher polynomials, the sum and the product of the roots vary. The roots of the quadratic equation can be given by, $ x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $ .
Complete step-by-step answer:
Now, we will determine the points for the equation $ y = {x^2} + 2x - 3 $ ,
Let us consider $ x = 0 $ , then we have,
$ y = {\left( 0 \right)^2} + 2\left( 0 \right) - 3 $
$ y = - 3 $
Now, we got a points for the equation $ y = {x^2} + 2x - 3 $ , i.e., $ \left( {0, - 3} \right) $
Similarly, let us consider $ x = 1 $ , then we have,
$ y = {\left( 1 \right)^2} + 2\left( 1 \right) - 3 $
$ y = 1 + 2 - 3 $
$ y = 0 $
Therefore, the point is $ \left( {1,0} \right) $ .
Let $ x = - 1 $ , we have,
$ y = {\left( { - 1} \right)^2} + 2\left( { - 1} \right) - 3 $
$ y = 1 - 2 - 3 $
$ y = - 4 $
Therefore, the point is $ \left( { - 1, - 4} \right) $
Let $ x = 2 $ , we have,
$ y = {\left( 2 \right)^2} + 2\left( 2 \right) - 3 $
$ y = 4 + 4 - 3 $
$ y = 5 $
Therefore, the point is $ \left( {2,5} \right) $
Let $ x = - 2 $ , we have,
$ y = {\left( { - 2} \right)^2} + 2\left( { - 2} \right) - 3 $
$ y = 4 - 4 - 3 $
$ y = - 3 $
Therefore, the point is $ \left( { - 2, - 3} \right) $
Let $ x = 3 $ , we have,
$ y = {\left( 3 \right)^2} + 2\left( 3 \right) - 3 $
$ y = 9 - 6 - 3 $
$ y = 12 $
Therefore, the point is $ \left( {3,12} \right) $
Let $ x = - 3 $ , we have,
$ y = {\left( { - 3} \right)^2} + 2\left( { - 3} \right) - 3 $
$ y = 9 - 6 - 3 $
$ y = 0 $
Therefore, the point is $ \left( { - 3,0} \right) $
x | 1 | -1 | 2 | -2 | 3 | -3 |
y | 0 | -4 | 5 | -3 | 12 | 0 |
P(x,y) | (1,0) | (-1,-4) | (2,5) | (-2,-3) | (3,12) | (-3,0) |
Now let us plot it graphically,

Now, we need to determine the sum of the roots of the equation $ {x^2} - x - 6 = 0 $ .
We know that, for a quadratic equation $ a{x^2} + bx + c = 0 $ ,
The sum of the roots= $ \dfrac{{ - b}}{a} $
And, the product of the roots= $ \dfrac{c}{a} $
Therefore,
$ {x^2} - \left( {sum\,of\,the\,roots} \right)x + \left( {product\,of\,the\,roots} \right) = 0 $
Therefore, by comparing $ {x^2} - x - 6 = 0 $ with the above equation, we have,
The sum of the equation= $ \dfrac{{ - \left( { - 1} \right)}}{1} $ $ = 1 $
Hence, the sum of roots of $ {x^2} - x - 6 = 0 $ is $ 1 $ .
So, the correct answer is “1”.
Note: It is important to note here that the sum of the roots of the quadratic equation is equal to the negation of the coefficient of the second term, divided by the leaving leading coefficient. The product of the roots of a quadratic equation is equal to the constant term, divided by the leading coefficient. In higher polynomials, the sum and the product of the roots vary. The roots of the quadratic equation can be given by, $ x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $ .
Recently Updated Pages
How do you convert r6sec theta into Cartesian form class 10 maths CBSE

How do you solve dfrac5y3dfracy+72y6+1 and find any class 10 maths CBSE

If sin A+B1 and cos AB1 0circ le left A+B rightle 90circ class 10 maths CBSE

On the number line 10 is to the of zero class 10 maths CBSE

How do you solve 5xge 30 class 10 maths CBSE

In the following sentence supply a verb in agreement class 10 english CBSE

Trending doubts
Write an application to the principal requesting five class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the median of the first 10 natural numbers class 10 maths CBSE

Write examples of herbivores carnivores and omnivo class 10 biology CBSE
