Answer
Verified
477.6k+ views
Hint: The radius of curvature of a spherical mirror relates the closeness of the centre of curvature and the pole of the mirror. Focal length of a spherical mirror relates to the closeness of the focus of the mirror to the pole of the mirror.
Complete step-by-step answer:
The radius of curvature of a spherical mirror is the radius of the circle of which the spherical mirror is a part. It can also be defined as the distance between the centre of curvature of the mirror and the pole of the mirror on the principal axis. The radius of curvature is also a measure of how curved the mirror is. A spherical mirror with a smaller radius of curvature will be more curved than one with a larger radius of curvature.
The focal length of a spherical mirror is the distance between the pole of the mirror and the focus of the mirror on the principal axis. Rays parallel to the principal axis converge on the focus (for a concave mirror) or appear to diverge from the focus (for a convex mirror).
Note: Students must keep in mind that the focal length is half of the radius of curvature for spherical mirrors and lenses. This property comes in very handy in many numerical problems. For a plane mirror, the radius of curvature can be said to be infinity and hence, a plane mirror does not curve at all. The focus for a concave mirror is in front of the mirror (real focus) while for a convex mirror, it is behind the mirror (virtual focus) and hence, the respective focal lengths radii of curvatures of the two mirrors are measured in front and behind the mirrors respectively.
Complete step-by-step answer:
The radius of curvature of a spherical mirror is the radius of the circle of which the spherical mirror is a part. It can also be defined as the distance between the centre of curvature of the mirror and the pole of the mirror on the principal axis. The radius of curvature is also a measure of how curved the mirror is. A spherical mirror with a smaller radius of curvature will be more curved than one with a larger radius of curvature.
The focal length of a spherical mirror is the distance between the pole of the mirror and the focus of the mirror on the principal axis. Rays parallel to the principal axis converge on the focus (for a concave mirror) or appear to diverge from the focus (for a convex mirror).
Note: Students must keep in mind that the focal length is half of the radius of curvature for spherical mirrors and lenses. This property comes in very handy in many numerical problems. For a plane mirror, the radius of curvature can be said to be infinity and hence, a plane mirror does not curve at all. The focus for a concave mirror is in front of the mirror (real focus) while for a convex mirror, it is behind the mirror (virtual focus) and hence, the respective focal lengths radii of curvatures of the two mirrors are measured in front and behind the mirrors respectively.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
What are the major means of transport Explain each class 12 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE