
Angle of dip $\delta$ and latitude $\lambda$, on earth’s surface are related as
A.$\tan { \delta =2\tan { \lambda } }$
B.$\tan { \delta =\cot { \lambda } }$
C.$\tan { \delta =\dfrac { \tan { \lambda } }{ 2 } }$
D.$\tan { \delta =\tan { \lambda } }$

Answer
519k+ views
Hint: Using the formula for magnetic field find the magnetic field at position r. Then, find the magnetic field at $\theta$. But, $ \theta =90+\lambda$ , so substitute this value in the equation for magnetic field for r as well as $\theta$. Now, take the ratio of these obtained magnetic fields and get the relation between angle of dip $\theta$ and latitude $\lambda$.
Formula used:
${ B }_{ r }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { 2M\cos { \theta } }{ { r }^{ 3 } }$
${ B }_{ \theta }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\sin { \theta } }{ { r }^{ 3 } }$
Complete answer:
Consider the situation for dipoles at positions, r and $\theta$
The magnetic field at position r is given by,
${ B }_{ r }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { 2M\cos { \theta } }{ { r }^{ 3 } }$ …(1)
The magnetic field at $\theta$ is given by,
${ B }_{ \theta }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\sin { \theta } }{ { r }^{ 3 } }$ …(2)
But, $ \theta =90+\lambda$ …(3)
Thus, substituting the equation. (3) in equation. (2) we get,
${ B }_{ r }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { 2M\cos { 90+ \lambda } }{ { r }^{ 3 } }$
$\Rightarrow { B }_{ r }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\sin {\lambda} }{ { r }^{ 3 } }$ …(4)
Similarly. Equation. (2) becomes,
${ B }_{ \theta }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\sin { 90+ \lambda } }{ { r }^{ 3 } }$
${ B }_{ \theta }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\cos {\lambda} }{ { r }^{ 3 } }$ …(5)
Dividing equation.(4) by (5) we get,
$\dfrac { { B }_{ r } }{ { B }_{ \theta } } =-2\tan { \lambda }$
Or we can also write it as,
$\tan { \delta =\tan { \lambda } }$
Hence, the correct answer is option D i.e. $\tan { \delta =\tan { \lambda } }.$
Note:
Here, the angle of dip means the angle of magnetic dip. Magnetic dip is defined as an angle which is made between the Earth’s magnetic field lines and horizontal plane. This angle is not constant. It depends on the point that is taken into consideration. And by latitude, we mean magnetic latitude. It is different from geographic latitude. It is defined with respect to the magnetic dipoles.
Formula used:
${ B }_{ r }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { 2M\cos { \theta } }{ { r }^{ 3 } }$
${ B }_{ \theta }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\sin { \theta } }{ { r }^{ 3 } }$
Complete answer:
Consider the situation for dipoles at positions, r and $\theta$
The magnetic field at position r is given by,
${ B }_{ r }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { 2M\cos { \theta } }{ { r }^{ 3 } }$ …(1)
The magnetic field at $\theta$ is given by,
${ B }_{ \theta }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\sin { \theta } }{ { r }^{ 3 } }$ …(2)
But, $ \theta =90+\lambda$ …(3)
Thus, substituting the equation. (3) in equation. (2) we get,
${ B }_{ r }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { 2M\cos { 90+ \lambda } }{ { r }^{ 3 } }$
$\Rightarrow { B }_{ r }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\sin {\lambda} }{ { r }^{ 3 } }$ …(4)
Similarly. Equation. (2) becomes,
${ B }_{ \theta }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\sin { 90+ \lambda } }{ { r }^{ 3 } }$
${ B }_{ \theta }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\cos {\lambda} }{ { r }^{ 3 } }$ …(5)
Dividing equation.(4) by (5) we get,
$\dfrac { { B }_{ r } }{ { B }_{ \theta } } =-2\tan { \lambda }$
Or we can also write it as,
$\tan { \delta =\tan { \lambda } }$
Hence, the correct answer is option D i.e. $\tan { \delta =\tan { \lambda } }.$
Note:
Here, the angle of dip means the angle of magnetic dip. Magnetic dip is defined as an angle which is made between the Earth’s magnetic field lines and horizontal plane. This angle is not constant. It depends on the point that is taken into consideration. And by latitude, we mean magnetic latitude. It is different from geographic latitude. It is defined with respect to the magnetic dipoles.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Sketch the electric field lines in case of an electric class 12 physics CBSE

State and explain Coulombs law in electrostatics class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE
