Answer
Verified
453.6k+ views
Hint: Use the formula for the work done by an external agent on the electric dipole. Determine the initial and final work done by the external agent on the electric dipoles and then determine the net work done by subtracting the initial work done from the final work done by the external agent.
Formulae used:
The work done \[W\] by an external agent on an electric dipole is given by
\[W = - \vec p \cdot \vec E\] …… (1)
Here, \[\vec p\] is the dipole moment and \[\vec E\] is the electric field.
Complete step by step answer:
We can see from the given information that the initial electric dipole moment \[\vec p\] is \[\vec p = \left( {3\hat i + 4\hat j} \right) \times {10^{ - 30}}\,{\text{C}} \cdot {\text{m}}\] and the final electric dipole moment \[{\vec p_f}\] is \[\left( { - 4\hat i + 3\hat j} \right) \times {10^{ - 30}}\,{\text{C}} \cdot {\text{m}}\].
\[\vec p = \left( {3\hat i + 4\hat j} \right) \times {10^{ - 30}}\,{\text{C}} \cdot {\text{m}}\]
\[{\vec p_f} = \left( { - 4\hat i + 3\hat j} \right) \times {10^{ - 30}}\,{\text{C}} \cdot {\text{m}}\]
The electric field is directed along X-direction and is given by \[\vec E = 4000\hat i\,{\text{N}} \cdot {\text{c}}\].
Let us determine the work done \[{W_i}\] by the external agent on the initial electric dipole moment \[\vec p\].
Rewrite equation (1) for the initial work done by the external agent on the electric dipole.
\[{W_i} = - \vec p \cdot \vec E\]
Substitute \[\vec p = \left( {3\hat i + 4\hat j} \right) \times {10^{ - 30}}\,{\text{C}} \cdot {\text{m}}\] for \[\vec p\] and \[\vec E = 4000\hat i\,{\text{N}} \cdot {\text{c}}\] for \[\vec E\] in the above equation.
\[{W_i} = - \left[ {\left( {3\hat i + 4\hat j} \right) \times {{10}^{ - 30}}\,{\text{C}} \cdot {\text{m}}} \right] \cdot \left( {4000\hat i\,{\text{N}} \cdot {\text{c}}} \right)\]
\[ \Rightarrow {W_i} = - \left[ {\left( {3\hat i} \right) \times {{10}^{ - 30}}\,{\text{C}} \cdot {\text{m}}} \right]\left( {4000\hat i\,{\text{N}} \cdot {\text{c}}} \right) - \left[ {\left( {4\hat j} \right) \times {{10}^{ - 30}}\,{\text{C}} \cdot {\text{m}}} \right]\left( {4000\hat i\,{\text{N}} \cdot {\text{c}}} \right)\]
\[ \Rightarrow {W_i} = - \left[ {\left( {3\hat i} \right) \times {{10}^{ - 30}}\,{\text{C}} \cdot {\text{m}}} \right]\left( {4000\hat i\,{\text{N}} \cdot {\text{c}}} \right) - 0\]
\[ \Rightarrow {W_i} = - 12000 \times {10^{ - 30}}\,{\text{J}}\]
\[ \Rightarrow {W_i} = - 12 \times {10^{ - 27}}\,{\text{J}}\]
Hence, the work done by the external agent on the initial electric dipole moment is \[ - 12 \times {10^{ - 27}}\,{\text{J}}\].
Let us determine the work done \[{W_i}\] by the external agent on the initial electric dipole moment \[\vec p\].
Rewrite equation (1) for the final work done \[{W_f}\] by the external agent on the electric dipole.
\[{W_i} = - {\vec p_f} \cdot \vec E\]
Substitute \[\left( { - 4\hat i + 3\hat j} \right) \times {10^{ - 30}}\,{\text{C}} \cdot {\text{m}}\] for \[{\vec p_f}\] and \[\vec E = 4000\hat i\,{\text{N}} \cdot {\text{c}}\] for \[\vec E\] in the above equation.
\[{W_f} = - \left[ {\left( { - 4\hat i + 3\hat j} \right) \times {{10}^{ - 30}}\,{\text{C}} \cdot {\text{m}}} \right] \cdot \left( {4000\hat i\,{\text{N}} \cdot {\text{c}}} \right)\]
\[ \Rightarrow {W_f} = \left[ {\left( {4\hat i} \right) \times {{10}^{ - 30}}\,{\text{C}} \cdot {\text{m}}} \right]\left( {4000\hat i\,{\text{N}} \cdot {\text{c}}} \right) - \left[ {\left( {3\hat j} \right) \times {{10}^{ - 30}}\,{\text{C}} \cdot {\text{m}}} \right]\left( {4000\hat i\,{\text{N}} \cdot {\text{c}}} \right)\]
\[ \Rightarrow {W_f} = \left[ {\left( {4\hat i} \right) \times {{10}^{ - 30}}\,{\text{C}} \cdot {\text{m}}} \right]\left( {4000\hat i\,{\text{N}} \cdot {\text{c}}} \right) - 0\]
\[ \Rightarrow {W_f} = 16000 \times {10^{ - 30}}\,{\text{J}}\]
\[ \Rightarrow {W_f} = 16 \times {10^{ - 27}}\,{\text{J}}\]
Hence, the work done by the external agent on the final electric dipole moment is \[16 \times {10^{ - 27}}\,{\text{J}}\].
The net work done \[W\] by the external agent is
\[W = {W_f} - {W_i}\]
Substitute \[ - 12 \times {10^{ - 27}}\,{\text{J}}\] for \[{W_i}\] and \[16 \times {10^{ - 27}}\,{\text{J}}\] for \[{W_f}\] in the above equation.
\[W = \left( {16 \times {{10}^{ - 27}}\,{\text{J}}} \right) - \left( { - 12 \times {{10}^{ - 27}}\,{\text{J}}} \right)\]
\[ \Rightarrow W = 2.8 \times {10^{ - 26}}\,{\text{J}}\]
Therefore, the work done by the external agent is \[2.8 \times {10^{ - 26}}\,{\text{J}}\].
So, the correct answer is option (C).
Note:
While calculating the initial and final work done, the students may multiply all the electric dipole moment vectors by the electric field vector as a normal multiplication. But one should keep in mind that the dot product of two unit vectors along two different directions is zero and that of the two unit vectors along one direction is one.
Formulae used:
The work done \[W\] by an external agent on an electric dipole is given by
\[W = - \vec p \cdot \vec E\] …… (1)
Here, \[\vec p\] is the dipole moment and \[\vec E\] is the electric field.
Complete step by step answer:
We can see from the given information that the initial electric dipole moment \[\vec p\] is \[\vec p = \left( {3\hat i + 4\hat j} \right) \times {10^{ - 30}}\,{\text{C}} \cdot {\text{m}}\] and the final electric dipole moment \[{\vec p_f}\] is \[\left( { - 4\hat i + 3\hat j} \right) \times {10^{ - 30}}\,{\text{C}} \cdot {\text{m}}\].
\[\vec p = \left( {3\hat i + 4\hat j} \right) \times {10^{ - 30}}\,{\text{C}} \cdot {\text{m}}\]
\[{\vec p_f} = \left( { - 4\hat i + 3\hat j} \right) \times {10^{ - 30}}\,{\text{C}} \cdot {\text{m}}\]
The electric field is directed along X-direction and is given by \[\vec E = 4000\hat i\,{\text{N}} \cdot {\text{c}}\].
Let us determine the work done \[{W_i}\] by the external agent on the initial electric dipole moment \[\vec p\].
Rewrite equation (1) for the initial work done by the external agent on the electric dipole.
\[{W_i} = - \vec p \cdot \vec E\]
Substitute \[\vec p = \left( {3\hat i + 4\hat j} \right) \times {10^{ - 30}}\,{\text{C}} \cdot {\text{m}}\] for \[\vec p\] and \[\vec E = 4000\hat i\,{\text{N}} \cdot {\text{c}}\] for \[\vec E\] in the above equation.
\[{W_i} = - \left[ {\left( {3\hat i + 4\hat j} \right) \times {{10}^{ - 30}}\,{\text{C}} \cdot {\text{m}}} \right] \cdot \left( {4000\hat i\,{\text{N}} \cdot {\text{c}}} \right)\]
\[ \Rightarrow {W_i} = - \left[ {\left( {3\hat i} \right) \times {{10}^{ - 30}}\,{\text{C}} \cdot {\text{m}}} \right]\left( {4000\hat i\,{\text{N}} \cdot {\text{c}}} \right) - \left[ {\left( {4\hat j} \right) \times {{10}^{ - 30}}\,{\text{C}} \cdot {\text{m}}} \right]\left( {4000\hat i\,{\text{N}} \cdot {\text{c}}} \right)\]
\[ \Rightarrow {W_i} = - \left[ {\left( {3\hat i} \right) \times {{10}^{ - 30}}\,{\text{C}} \cdot {\text{m}}} \right]\left( {4000\hat i\,{\text{N}} \cdot {\text{c}}} \right) - 0\]
\[ \Rightarrow {W_i} = - 12000 \times {10^{ - 30}}\,{\text{J}}\]
\[ \Rightarrow {W_i} = - 12 \times {10^{ - 27}}\,{\text{J}}\]
Hence, the work done by the external agent on the initial electric dipole moment is \[ - 12 \times {10^{ - 27}}\,{\text{J}}\].
Let us determine the work done \[{W_i}\] by the external agent on the initial electric dipole moment \[\vec p\].
Rewrite equation (1) for the final work done \[{W_f}\] by the external agent on the electric dipole.
\[{W_i} = - {\vec p_f} \cdot \vec E\]
Substitute \[\left( { - 4\hat i + 3\hat j} \right) \times {10^{ - 30}}\,{\text{C}} \cdot {\text{m}}\] for \[{\vec p_f}\] and \[\vec E = 4000\hat i\,{\text{N}} \cdot {\text{c}}\] for \[\vec E\] in the above equation.
\[{W_f} = - \left[ {\left( { - 4\hat i + 3\hat j} \right) \times {{10}^{ - 30}}\,{\text{C}} \cdot {\text{m}}} \right] \cdot \left( {4000\hat i\,{\text{N}} \cdot {\text{c}}} \right)\]
\[ \Rightarrow {W_f} = \left[ {\left( {4\hat i} \right) \times {{10}^{ - 30}}\,{\text{C}} \cdot {\text{m}}} \right]\left( {4000\hat i\,{\text{N}} \cdot {\text{c}}} \right) - \left[ {\left( {3\hat j} \right) \times {{10}^{ - 30}}\,{\text{C}} \cdot {\text{m}}} \right]\left( {4000\hat i\,{\text{N}} \cdot {\text{c}}} \right)\]
\[ \Rightarrow {W_f} = \left[ {\left( {4\hat i} \right) \times {{10}^{ - 30}}\,{\text{C}} \cdot {\text{m}}} \right]\left( {4000\hat i\,{\text{N}} \cdot {\text{c}}} \right) - 0\]
\[ \Rightarrow {W_f} = 16000 \times {10^{ - 30}}\,{\text{J}}\]
\[ \Rightarrow {W_f} = 16 \times {10^{ - 27}}\,{\text{J}}\]
Hence, the work done by the external agent on the final electric dipole moment is \[16 \times {10^{ - 27}}\,{\text{J}}\].
The net work done \[W\] by the external agent is
\[W = {W_f} - {W_i}\]
Substitute \[ - 12 \times {10^{ - 27}}\,{\text{J}}\] for \[{W_i}\] and \[16 \times {10^{ - 27}}\,{\text{J}}\] for \[{W_f}\] in the above equation.
\[W = \left( {16 \times {{10}^{ - 27}}\,{\text{J}}} \right) - \left( { - 12 \times {{10}^{ - 27}}\,{\text{J}}} \right)\]
\[ \Rightarrow W = 2.8 \times {10^{ - 26}}\,{\text{J}}\]
Therefore, the work done by the external agent is \[2.8 \times {10^{ - 26}}\,{\text{J}}\].
So, the correct answer is option (C).
Note:
While calculating the initial and final work done, the students may multiply all the electric dipole moment vectors by the electric field vector as a normal multiplication. But one should keep in mind that the dot product of two unit vectors along two different directions is zero and that of the two unit vectors along one direction is one.
Recently Updated Pages
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Class 10 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
10 examples of friction in our daily life
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
State the laws of reflection of light