
An electric dipole with dipole moment \[\vec p = \left( {3\hat i + 4\hat j} \right) \times {10^{ - 30}}\,{\text{C}} \cdot {\text{m}}\] is placed in an electric field \[\vec E = 4000\hat i\,{\text{N}} \cdot {\text{c}}\]. An external agent turns the dipole and is dipole moment becomes \[\left( { - 4\hat i + 3\hat j} \right) \times {10^{ - 30}}\,{\text{C}} \cdot {\text{m}}\]. The work done by the external agent is equal to:
A. \[4 \times {10^{ - 27}}\,{\text{J}}\]
B. \[ - 4 \times {10^{ - 27}}\,{\text{J}}\]
C. \[2.8 \times {10^{ - 26}}\,{\text{J}}\]
D. \[ - 2.8 \times {10^{ - 26}}\,{\text{J}}\]
Answer
489.3k+ views
Hint: Use the formula for the work done by an external agent on the electric dipole. Determine the initial and final work done by the external agent on the electric dipoles and then determine the net work done by subtracting the initial work done from the final work done by the external agent.
Formulae used:
The work done \[W\] by an external agent on an electric dipole is given by
\[W = - \vec p \cdot \vec E\] …… (1)
Here, \[\vec p\] is the dipole moment and \[\vec E\] is the electric field.
Complete step by step answer:
We can see from the given information that the initial electric dipole moment \[\vec p\] is \[\vec p = \left( {3\hat i + 4\hat j} \right) \times {10^{ - 30}}\,{\text{C}} \cdot {\text{m}}\] and the final electric dipole moment \[{\vec p_f}\] is \[\left( { - 4\hat i + 3\hat j} \right) \times {10^{ - 30}}\,{\text{C}} \cdot {\text{m}}\].
\[\vec p = \left( {3\hat i + 4\hat j} \right) \times {10^{ - 30}}\,{\text{C}} \cdot {\text{m}}\]
\[{\vec p_f} = \left( { - 4\hat i + 3\hat j} \right) \times {10^{ - 30}}\,{\text{C}} \cdot {\text{m}}\]
The electric field is directed along X-direction and is given by \[\vec E = 4000\hat i\,{\text{N}} \cdot {\text{c}}\].
Let us determine the work done \[{W_i}\] by the external agent on the initial electric dipole moment \[\vec p\].
Rewrite equation (1) for the initial work done by the external agent on the electric dipole.
\[{W_i} = - \vec p \cdot \vec E\]
Substitute \[\vec p = \left( {3\hat i + 4\hat j} \right) \times {10^{ - 30}}\,{\text{C}} \cdot {\text{m}}\] for \[\vec p\] and \[\vec E = 4000\hat i\,{\text{N}} \cdot {\text{c}}\] for \[\vec E\] in the above equation.
\[{W_i} = - \left[ {\left( {3\hat i + 4\hat j} \right) \times {{10}^{ - 30}}\,{\text{C}} \cdot {\text{m}}} \right] \cdot \left( {4000\hat i\,{\text{N}} \cdot {\text{c}}} \right)\]
\[ \Rightarrow {W_i} = - \left[ {\left( {3\hat i} \right) \times {{10}^{ - 30}}\,{\text{C}} \cdot {\text{m}}} \right]\left( {4000\hat i\,{\text{N}} \cdot {\text{c}}} \right) - \left[ {\left( {4\hat j} \right) \times {{10}^{ - 30}}\,{\text{C}} \cdot {\text{m}}} \right]\left( {4000\hat i\,{\text{N}} \cdot {\text{c}}} \right)\]
\[ \Rightarrow {W_i} = - \left[ {\left( {3\hat i} \right) \times {{10}^{ - 30}}\,{\text{C}} \cdot {\text{m}}} \right]\left( {4000\hat i\,{\text{N}} \cdot {\text{c}}} \right) - 0\]
\[ \Rightarrow {W_i} = - 12000 \times {10^{ - 30}}\,{\text{J}}\]
\[ \Rightarrow {W_i} = - 12 \times {10^{ - 27}}\,{\text{J}}\]
Hence, the work done by the external agent on the initial electric dipole moment is \[ - 12 \times {10^{ - 27}}\,{\text{J}}\].
Let us determine the work done \[{W_i}\] by the external agent on the initial electric dipole moment \[\vec p\].
Rewrite equation (1) for the final work done \[{W_f}\] by the external agent on the electric dipole.
\[{W_i} = - {\vec p_f} \cdot \vec E\]
Substitute \[\left( { - 4\hat i + 3\hat j} \right) \times {10^{ - 30}}\,{\text{C}} \cdot {\text{m}}\] for \[{\vec p_f}\] and \[\vec E = 4000\hat i\,{\text{N}} \cdot {\text{c}}\] for \[\vec E\] in the above equation.
\[{W_f} = - \left[ {\left( { - 4\hat i + 3\hat j} \right) \times {{10}^{ - 30}}\,{\text{C}} \cdot {\text{m}}} \right] \cdot \left( {4000\hat i\,{\text{N}} \cdot {\text{c}}} \right)\]
\[ \Rightarrow {W_f} = \left[ {\left( {4\hat i} \right) \times {{10}^{ - 30}}\,{\text{C}} \cdot {\text{m}}} \right]\left( {4000\hat i\,{\text{N}} \cdot {\text{c}}} \right) - \left[ {\left( {3\hat j} \right) \times {{10}^{ - 30}}\,{\text{C}} \cdot {\text{m}}} \right]\left( {4000\hat i\,{\text{N}} \cdot {\text{c}}} \right)\]
\[ \Rightarrow {W_f} = \left[ {\left( {4\hat i} \right) \times {{10}^{ - 30}}\,{\text{C}} \cdot {\text{m}}} \right]\left( {4000\hat i\,{\text{N}} \cdot {\text{c}}} \right) - 0\]
\[ \Rightarrow {W_f} = 16000 \times {10^{ - 30}}\,{\text{J}}\]
\[ \Rightarrow {W_f} = 16 \times {10^{ - 27}}\,{\text{J}}\]
Hence, the work done by the external agent on the final electric dipole moment is \[16 \times {10^{ - 27}}\,{\text{J}}\].
The net work done \[W\] by the external agent is
\[W = {W_f} - {W_i}\]
Substitute \[ - 12 \times {10^{ - 27}}\,{\text{J}}\] for \[{W_i}\] and \[16 \times {10^{ - 27}}\,{\text{J}}\] for \[{W_f}\] in the above equation.
\[W = \left( {16 \times {{10}^{ - 27}}\,{\text{J}}} \right) - \left( { - 12 \times {{10}^{ - 27}}\,{\text{J}}} \right)\]
\[ \Rightarrow W = 2.8 \times {10^{ - 26}}\,{\text{J}}\]
Therefore, the work done by the external agent is \[2.8 \times {10^{ - 26}}\,{\text{J}}\].
So, the correct answer is option (C).
Note:
While calculating the initial and final work done, the students may multiply all the electric dipole moment vectors by the electric field vector as a normal multiplication. But one should keep in mind that the dot product of two unit vectors along two different directions is zero and that of the two unit vectors along one direction is one.
Formulae used:
The work done \[W\] by an external agent on an electric dipole is given by
\[W = - \vec p \cdot \vec E\] …… (1)
Here, \[\vec p\] is the dipole moment and \[\vec E\] is the electric field.
Complete step by step answer:
We can see from the given information that the initial electric dipole moment \[\vec p\] is \[\vec p = \left( {3\hat i + 4\hat j} \right) \times {10^{ - 30}}\,{\text{C}} \cdot {\text{m}}\] and the final electric dipole moment \[{\vec p_f}\] is \[\left( { - 4\hat i + 3\hat j} \right) \times {10^{ - 30}}\,{\text{C}} \cdot {\text{m}}\].
\[\vec p = \left( {3\hat i + 4\hat j} \right) \times {10^{ - 30}}\,{\text{C}} \cdot {\text{m}}\]
\[{\vec p_f} = \left( { - 4\hat i + 3\hat j} \right) \times {10^{ - 30}}\,{\text{C}} \cdot {\text{m}}\]
The electric field is directed along X-direction and is given by \[\vec E = 4000\hat i\,{\text{N}} \cdot {\text{c}}\].
Let us determine the work done \[{W_i}\] by the external agent on the initial electric dipole moment \[\vec p\].
Rewrite equation (1) for the initial work done by the external agent on the electric dipole.
\[{W_i} = - \vec p \cdot \vec E\]
Substitute \[\vec p = \left( {3\hat i + 4\hat j} \right) \times {10^{ - 30}}\,{\text{C}} \cdot {\text{m}}\] for \[\vec p\] and \[\vec E = 4000\hat i\,{\text{N}} \cdot {\text{c}}\] for \[\vec E\] in the above equation.
\[{W_i} = - \left[ {\left( {3\hat i + 4\hat j} \right) \times {{10}^{ - 30}}\,{\text{C}} \cdot {\text{m}}} \right] \cdot \left( {4000\hat i\,{\text{N}} \cdot {\text{c}}} \right)\]
\[ \Rightarrow {W_i} = - \left[ {\left( {3\hat i} \right) \times {{10}^{ - 30}}\,{\text{C}} \cdot {\text{m}}} \right]\left( {4000\hat i\,{\text{N}} \cdot {\text{c}}} \right) - \left[ {\left( {4\hat j} \right) \times {{10}^{ - 30}}\,{\text{C}} \cdot {\text{m}}} \right]\left( {4000\hat i\,{\text{N}} \cdot {\text{c}}} \right)\]
\[ \Rightarrow {W_i} = - \left[ {\left( {3\hat i} \right) \times {{10}^{ - 30}}\,{\text{C}} \cdot {\text{m}}} \right]\left( {4000\hat i\,{\text{N}} \cdot {\text{c}}} \right) - 0\]
\[ \Rightarrow {W_i} = - 12000 \times {10^{ - 30}}\,{\text{J}}\]
\[ \Rightarrow {W_i} = - 12 \times {10^{ - 27}}\,{\text{J}}\]
Hence, the work done by the external agent on the initial electric dipole moment is \[ - 12 \times {10^{ - 27}}\,{\text{J}}\].
Let us determine the work done \[{W_i}\] by the external agent on the initial electric dipole moment \[\vec p\].
Rewrite equation (1) for the final work done \[{W_f}\] by the external agent on the electric dipole.
\[{W_i} = - {\vec p_f} \cdot \vec E\]
Substitute \[\left( { - 4\hat i + 3\hat j} \right) \times {10^{ - 30}}\,{\text{C}} \cdot {\text{m}}\] for \[{\vec p_f}\] and \[\vec E = 4000\hat i\,{\text{N}} \cdot {\text{c}}\] for \[\vec E\] in the above equation.
\[{W_f} = - \left[ {\left( { - 4\hat i + 3\hat j} \right) \times {{10}^{ - 30}}\,{\text{C}} \cdot {\text{m}}} \right] \cdot \left( {4000\hat i\,{\text{N}} \cdot {\text{c}}} \right)\]
\[ \Rightarrow {W_f} = \left[ {\left( {4\hat i} \right) \times {{10}^{ - 30}}\,{\text{C}} \cdot {\text{m}}} \right]\left( {4000\hat i\,{\text{N}} \cdot {\text{c}}} \right) - \left[ {\left( {3\hat j} \right) \times {{10}^{ - 30}}\,{\text{C}} \cdot {\text{m}}} \right]\left( {4000\hat i\,{\text{N}} \cdot {\text{c}}} \right)\]
\[ \Rightarrow {W_f} = \left[ {\left( {4\hat i} \right) \times {{10}^{ - 30}}\,{\text{C}} \cdot {\text{m}}} \right]\left( {4000\hat i\,{\text{N}} \cdot {\text{c}}} \right) - 0\]
\[ \Rightarrow {W_f} = 16000 \times {10^{ - 30}}\,{\text{J}}\]
\[ \Rightarrow {W_f} = 16 \times {10^{ - 27}}\,{\text{J}}\]
Hence, the work done by the external agent on the final electric dipole moment is \[16 \times {10^{ - 27}}\,{\text{J}}\].
The net work done \[W\] by the external agent is
\[W = {W_f} - {W_i}\]
Substitute \[ - 12 \times {10^{ - 27}}\,{\text{J}}\] for \[{W_i}\] and \[16 \times {10^{ - 27}}\,{\text{J}}\] for \[{W_f}\] in the above equation.
\[W = \left( {16 \times {{10}^{ - 27}}\,{\text{J}}} \right) - \left( { - 12 \times {{10}^{ - 27}}\,{\text{J}}} \right)\]
\[ \Rightarrow W = 2.8 \times {10^{ - 26}}\,{\text{J}}\]
Therefore, the work done by the external agent is \[2.8 \times {10^{ - 26}}\,{\text{J}}\].
So, the correct answer is option (C).
Note:
While calculating the initial and final work done, the students may multiply all the electric dipole moment vectors by the electric field vector as a normal multiplication. But one should keep in mind that the dot product of two unit vectors along two different directions is zero and that of the two unit vectors along one direction is one.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
