
ABCD is a parallelogram. The position vectors of the points A, B and C are respectively, $ 4\widehat{i}+5\widehat{j}-10\widehat{k} $ , $ 2\widehat{i}-3\widehat{j}+4\widehat{k} $ and \[-\widehat{i}+2\widehat{j}+\widehat{k}\]. Find the vector equation of line BD. Also, reduce it to cartesian form.
Answer
474.9k+ views
Hint: We will use the fact that the diagonals of a parallelogram bisect each other to obtain an equation that has the coordinates of point D as unknowns. We will solve this equation to obtain the coordinates of point D. Then we will find the vector equation of line BD using the coordinates of point B and point D. After that, we will convert this equation into the cartesian form.
Complete step by step answer:
We have a parallelogram ABCD. We know that the diagonals of the parallelogram bisect each other. This means that the diagonal AC and the diagonal BD have the same midpoint. We know that the position vector of a midpoint of two points with position vectors \[\overrightarrow{x}\] and $ \overrightarrow{y} $ is given by $ \dfrac{\overrightarrow{x}+\overrightarrow{y}}{2} $ .
We are given the following position vectors, $ \overrightarrow{\text{A}}=4\widehat{i}+5\widehat{j}-10\widehat{k} $ , $ \overrightarrow{\text{B}}=2\widehat{i}-3\widehat{j}+4\widehat{k} $ and \[\overrightarrow{\text{C}}=-\widehat{i}+2\widehat{j}+\widehat{k}\]. Let us assume that $ \overrightarrow{\text{D}}=a\widehat{i}+b\widehat{j}+c\widehat{k} $ .
We know that,
$ \text{midpoint of AC}=\text{midpoint of BD} $
Therefore, using the formula for position vector of a midpoint, we get the following,
$ \dfrac{\overrightarrow{\text{A}}+\overrightarrow{\text{C}}}{2}=\dfrac{\overrightarrow{\text{B}}+\overrightarrow{\text{D}}}{2} $
Substituting the position vectors of all the points, we get
\[\begin{align}
& \dfrac{4\widehat{i}+5\widehat{j}-10\widehat{k}-\widehat{i}+2\widehat{j}+\widehat{k}}{2}=\dfrac{2\widehat{i}-3\widehat{j}+4\widehat{k}+a\widehat{i}+b\widehat{j}+c\widehat{k}}{2} \\
& \Rightarrow \dfrac{3\widehat{i}+7\widehat{j}-9\widehat{k}}{2}=\dfrac{\left( 2+a \right)\widehat{i}+\left( -3+b \right)\widehat{j}+\left( 4+c \right)\widehat{k}}{2} \\
& \therefore \dfrac{3}{2}\widehat{i}+\dfrac{7}{2}\widehat{j}-\dfrac{9}{2}\widehat{k}=\dfrac{\left( 2+a \right)}{2}\widehat{i}+\dfrac{\left( -3+b \right)}{2}\widehat{j}+\dfrac{\left( 4+c \right)}{2}\widehat{k} \\
\end{align}\]
Comparing the coefficients, we have the following,
$ \begin{align}
& \dfrac{3}{2}=\dfrac{2+a}{2} \\
& \Rightarrow a+2=3 \\
& \therefore a=1 \\
\end{align} $
Similarly, we get
$ \begin{align}
& \dfrac{7}{2}=\dfrac{-3+b}{2} \\
& \Rightarrow -3+b=7 \\
& \therefore b=10 \\
\end{align} $
And also,
$ \begin{align}
& -\dfrac{9}{2}=\dfrac{4+c}{2} \\
& \Rightarrow 4+c=-9 \\
& \therefore c=-13 \\
\end{align} $
Hence, the position vector of point D is \[\widehat{i}+10\widehat{j}-13\widehat{k}\].
Now, we will find the vector equation of the line BD in the following manner,
$ \overrightarrow{\text{BD}}=\overrightarrow{\text{B}}+\lambda \left( \overrightarrow{\text{D}}-\overrightarrow{\text{B}} \right) $ , where $ \lambda $ is a parameter.
Substituting the position vectors of point B and D in the above equation, we get
$ \begin{align}
& \overrightarrow{\text{BD}}=2\widehat{i}-3\widehat{j}+4\widehat{k}+\lambda \left( \widehat{i}+10\widehat{j}-13\widehat{k}-2\widehat{i}+3\widehat{j}-4\widehat{k} \right) \\
& \Rightarrow \overrightarrow{\text{BD}}=2\widehat{i}-3\widehat{j}+4\widehat{k}+\lambda \left( -\widehat{i}+13\widehat{j}-17\widehat{k} \right) \\
& \therefore \overrightarrow{\text{BD}}=\left( 2-\lambda \right)\widehat{i}+\left( -3+13\lambda \right)\widehat{j}+\left( 4-17\lambda \right)\widehat{k} \\
\end{align} $
Next, we have to convert the above vector equation into cartesian form. We will equate the above equation with $ x\widehat{i}+y\widehat{j}+z\widehat{k} $ as follows,
$ \left( 2-\lambda \right)\widehat{i}+\left( -3+13\lambda \right)\widehat{j}+\left( 4-17\lambda \right)\widehat{k}=x\widehat{i}+y\widehat{j}+z\widehat{k} $
Comparing the coefficients, we get the following
$ \begin{align}
& x=2-\lambda \\
& \therefore \lambda =\dfrac{x-2}{-1} \\
\end{align} $
$ \begin{align}
& y=-3+13\lambda \\
& \therefore \lambda =\dfrac{y+3}{13} \\
\end{align} $
$ \begin{align}
& z=4-17\lambda \\
& \therefore \lambda =\dfrac{z-4}{-17} \\
\end{align} $
Therefore, the cartesian form of the vector equation is the following,
$ \lambda =\dfrac{x-2}{-1}=\dfrac{y+3}{13}=\dfrac{z-4}{-17} $
Note:
It is important that we know the formula for finding the vector equation of a line by using position vectors of two points. The conversion from the cartesian equation to the vector equation is the reverse of the process that we used to convert vector equation into a cartesian form. The calculations in such type of questions can be tricky since we are comparing coefficients in more than one place.
Complete step by step answer:
We have a parallelogram ABCD. We know that the diagonals of the parallelogram bisect each other. This means that the diagonal AC and the diagonal BD have the same midpoint. We know that the position vector of a midpoint of two points with position vectors \[\overrightarrow{x}\] and $ \overrightarrow{y} $ is given by $ \dfrac{\overrightarrow{x}+\overrightarrow{y}}{2} $ .
We are given the following position vectors, $ \overrightarrow{\text{A}}=4\widehat{i}+5\widehat{j}-10\widehat{k} $ , $ \overrightarrow{\text{B}}=2\widehat{i}-3\widehat{j}+4\widehat{k} $ and \[\overrightarrow{\text{C}}=-\widehat{i}+2\widehat{j}+\widehat{k}\]. Let us assume that $ \overrightarrow{\text{D}}=a\widehat{i}+b\widehat{j}+c\widehat{k} $ .
We know that,
$ \text{midpoint of AC}=\text{midpoint of BD} $
Therefore, using the formula for position vector of a midpoint, we get the following,
$ \dfrac{\overrightarrow{\text{A}}+\overrightarrow{\text{C}}}{2}=\dfrac{\overrightarrow{\text{B}}+\overrightarrow{\text{D}}}{2} $
Substituting the position vectors of all the points, we get
\[\begin{align}
& \dfrac{4\widehat{i}+5\widehat{j}-10\widehat{k}-\widehat{i}+2\widehat{j}+\widehat{k}}{2}=\dfrac{2\widehat{i}-3\widehat{j}+4\widehat{k}+a\widehat{i}+b\widehat{j}+c\widehat{k}}{2} \\
& \Rightarrow \dfrac{3\widehat{i}+7\widehat{j}-9\widehat{k}}{2}=\dfrac{\left( 2+a \right)\widehat{i}+\left( -3+b \right)\widehat{j}+\left( 4+c \right)\widehat{k}}{2} \\
& \therefore \dfrac{3}{2}\widehat{i}+\dfrac{7}{2}\widehat{j}-\dfrac{9}{2}\widehat{k}=\dfrac{\left( 2+a \right)}{2}\widehat{i}+\dfrac{\left( -3+b \right)}{2}\widehat{j}+\dfrac{\left( 4+c \right)}{2}\widehat{k} \\
\end{align}\]
Comparing the coefficients, we have the following,
$ \begin{align}
& \dfrac{3}{2}=\dfrac{2+a}{2} \\
& \Rightarrow a+2=3 \\
& \therefore a=1 \\
\end{align} $
Similarly, we get
$ \begin{align}
& \dfrac{7}{2}=\dfrac{-3+b}{2} \\
& \Rightarrow -3+b=7 \\
& \therefore b=10 \\
\end{align} $
And also,
$ \begin{align}
& -\dfrac{9}{2}=\dfrac{4+c}{2} \\
& \Rightarrow 4+c=-9 \\
& \therefore c=-13 \\
\end{align} $
Hence, the position vector of point D is \[\widehat{i}+10\widehat{j}-13\widehat{k}\].
Now, we will find the vector equation of the line BD in the following manner,
$ \overrightarrow{\text{BD}}=\overrightarrow{\text{B}}+\lambda \left( \overrightarrow{\text{D}}-\overrightarrow{\text{B}} \right) $ , where $ \lambda $ is a parameter.
Substituting the position vectors of point B and D in the above equation, we get
$ \begin{align}
& \overrightarrow{\text{BD}}=2\widehat{i}-3\widehat{j}+4\widehat{k}+\lambda \left( \widehat{i}+10\widehat{j}-13\widehat{k}-2\widehat{i}+3\widehat{j}-4\widehat{k} \right) \\
& \Rightarrow \overrightarrow{\text{BD}}=2\widehat{i}-3\widehat{j}+4\widehat{k}+\lambda \left( -\widehat{i}+13\widehat{j}-17\widehat{k} \right) \\
& \therefore \overrightarrow{\text{BD}}=\left( 2-\lambda \right)\widehat{i}+\left( -3+13\lambda \right)\widehat{j}+\left( 4-17\lambda \right)\widehat{k} \\
\end{align} $
Next, we have to convert the above vector equation into cartesian form. We will equate the above equation with $ x\widehat{i}+y\widehat{j}+z\widehat{k} $ as follows,
$ \left( 2-\lambda \right)\widehat{i}+\left( -3+13\lambda \right)\widehat{j}+\left( 4-17\lambda \right)\widehat{k}=x\widehat{i}+y\widehat{j}+z\widehat{k} $
Comparing the coefficients, we get the following
$ \begin{align}
& x=2-\lambda \\
& \therefore \lambda =\dfrac{x-2}{-1} \\
\end{align} $
$ \begin{align}
& y=-3+13\lambda \\
& \therefore \lambda =\dfrac{y+3}{13} \\
\end{align} $
$ \begin{align}
& z=4-17\lambda \\
& \therefore \lambda =\dfrac{z-4}{-17} \\
\end{align} $
Therefore, the cartesian form of the vector equation is the following,
$ \lambda =\dfrac{x-2}{-1}=\dfrac{y+3}{13}=\dfrac{z-4}{-17} $
Note:
It is important that we know the formula for finding the vector equation of a line by using position vectors of two points. The conversion from the cartesian equation to the vector equation is the reverse of the process that we used to convert vector equation into a cartesian form. The calculations in such type of questions can be tricky since we are comparing coefficients in more than one place.
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Write the following in Roman numerals 25819 class 7 maths CBSE

Trending doubts
A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

The British separated Burma Myanmar from India in 1935 class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What are the public facilities provided by the government? Also explain each facility

Difference between mass and weight class 10 physics CBSE

SI unit of electrical energy is A Joule B Kilowatt class 10 physics CBSE
