
A transparent (glass) sphere has a small, opaque dot at its centre. Does the apparent position of a dot appear to be the same as its actual position when observed from outside?
Answer
525k+ views
Hint: According to Snell’s law the ratio of the sine of the angle of incidence to the sine of the angle of refraction is a constant. All the rays that come out from an object that is kept at the centre of a transparent sphere will be normal to the surface of the sphere. The light will be reflected inside the sphere.
Complete step by step answer:
When light falls normally on the boundary surface then the angle if incidence will be $0$,
We will apply the lens formula considering the refractive indices of the medium involved
According to this formula;
$\dfrac{{{\mu _2}}}{v} - \dfrac{{{\mu _1}}}{u} = \dfrac{{\left( {{\mu _2} - {\mu _1}} \right)}}{R}$ ……………………………………… (i)
As we know that refractive index of glass is will be constant ${\mu _1} = \mu $,
${\mu _2}$(refractive index of surrounding) will be 1, $u = - R$ = {Radius of sphere} and \[R = - R\] is the radius of sphere
Substituting these values in equation (i)
We get,
$\dfrac{1}{v} - \dfrac{\mu }{{ - R}} = \dfrac{{\left( {1 - \mu } \right)}}{{ - R}}$………………………………………………(ii)
On solving above equation, we get,
$\dfrac{1}{v} = \dfrac{1}{{ - R}}$ …………………………………………………………….(iii)
From above relation, we can say that the "there will be no change in the position of an opaque dot at the centre of a transparent glass sphere when a person observes it from the outside."
Note:
When light falls normally on the boundary surface, then we have angle of incidence $i = 0$ and
According to Snell's law \[{\mu _1}\sin i\; = {\mu _2}\sin r.\] So, there will be no refraction, i.e. r is also zero. Thus, the light will be totally internally reflected.
Hence the object will be observed at the same position from outside, and this and will be independent of the refractive index of the sphere
Complete step by step answer:
When light falls normally on the boundary surface then the angle if incidence will be $0$,
We will apply the lens formula considering the refractive indices of the medium involved
According to this formula;
$\dfrac{{{\mu _2}}}{v} - \dfrac{{{\mu _1}}}{u} = \dfrac{{\left( {{\mu _2} - {\mu _1}} \right)}}{R}$ ……………………………………… (i)
As we know that refractive index of glass is will be constant ${\mu _1} = \mu $,
${\mu _2}$(refractive index of surrounding) will be 1, $u = - R$ = {Radius of sphere} and \[R = - R\] is the radius of sphere
Substituting these values in equation (i)
We get,
$\dfrac{1}{v} - \dfrac{\mu }{{ - R}} = \dfrac{{\left( {1 - \mu } \right)}}{{ - R}}$………………………………………………(ii)
On solving above equation, we get,
$\dfrac{1}{v} = \dfrac{1}{{ - R}}$ …………………………………………………………….(iii)
From above relation, we can say that the "there will be no change in the position of an opaque dot at the centre of a transparent glass sphere when a person observes it from the outside."
Note:
When light falls normally on the boundary surface, then we have angle of incidence $i = 0$ and
According to Snell's law \[{\mu _1}\sin i\; = {\mu _2}\sin r.\] So, there will be no refraction, i.e. r is also zero. Thus, the light will be totally internally reflected.
Hence the object will be observed at the same position from outside, and this and will be independent of the refractive index of the sphere
Recently Updated Pages
Transformation Matrix Explained: 4x4 Types & Uses (2025 Guide)

Unit Matrix Explained: Definition, 3x3 & 2x2 Examples for 2025

Sum of Cubes Formula: Find the Sum of Cubes of n Natural Numbers

Surjective Function Explained for Students (2025)

Multiplying and Dividing Exponents: Rules & Step-by-Step Guide (2025)

Factored Form Explained: How to Convert & Examples for 2025

Trending doubts
When was the first election held in India a 194748 class 12 sst CBSE

Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

The first general election of Lok Sabha was held in class 12 social science CBSE
