
A starts from a place P to go to a place Q. at the same time B starts from Q to P. if after meeting each other, A and B took 4 hours and 9 hours more respectively to reach their destination, what is the ratio of their speeds?
(a) 3:2
(b) 5:2
(c) 9:4
(d) 9:13
Answer
484.8k+ views
Hint: To solve this question, we will consider a point C’ between places P and Q where A and B meet. We will consider the distance PC as x and CQ as y. After this, we will apply the condition that at the same time A and B course different distances. Also, we will apply the condition of the remaining distances for A and Band how much time they need to cover it.
Complete step-by-step answer:
To solve this question, we will consider here a point C between the points P and Q such that the total distance between P and Q is d as shown:
Thus, from above figure we can see that the total distance, d=x+y. therefore:
$\Rightarrow y=d-x...........(i)$
We are given that, now A and B have met at point C. it is further given that the time taken for A to go from point c to point Q is 4 hours. Let us say that the speed of A is ${{V}_{A}}$ then the relation between the distance travelled, velocity and time elapsed is given as
\[\begin{align}
& speed=\dfrac{Total\,distance}{total\,time} \\
& {{V}_{A}}=y \\
& \Rightarrow y=4{{V}_{A}}............(ii) \\
\end{align}\]
Now, we are given that the time taken for B to go to point Q from point A is 9 hours. Thus, the relation between speed, distance travelled and total time taken is given by
$\begin{align}
& {{V}_{B}}=\dfrac{x}{9} \\
& \Rightarrow x=9{{V}_{B}}............(iii) \\
\end{align}$
Where ${{V}_{B}}$= velocity of B
Now, we are given that, initially A takes time t and reach the point C from point P. the same time is also taken by B to reach the point C from point Q. thus, we get the following relation:
$\begin{align}
& x={{V}_{A}}t.............(iv) \\
& y={{V}_{B}}t..............(v) \\
\end{align}$
Now we will divide the equation (iv) by equation (v). After dividing, we will get:
$\begin{align}
& \dfrac{x}{y}=\dfrac{{{V}_{A}}t}{{{V}_{B}}t} \\
& \Rightarrow \dfrac{x}{y}=\dfrac{{{V}_{A}}}{{{V}_{B}}}...........(vi) \\
\end{align}$
Now, we will put the values of x and y from equation (iv) and (v) into the equation (vi). After doing this, we will get following:
\[\dfrac{9{{V}_{B}}}{4{{V}_{A}}}=\dfrac{{{V}_{A}}}{{{V}_{B}}}\]
$\begin{align}
& \Rightarrow 9{{V}_{B}}^{2}=4{{V}_{A}}^{2} \\
& \Rightarrow 3{{V}_{B}}=2{{V}_{A}} \\
& \Rightarrow \dfrac{{{V}_{A}}}{{{V}_{B}}}=\dfrac{3}{2} \\
\end{align}$
So, the correct answer is “Option A”.
Note: Another way of doing this question is as follows when A and B meet at point C, then we can have following relation:
\[{{V}_{A}}t+{{V}_{B}}t=d\]
After meeting, the distance left for $A={{V}_{B}}t$ and the distance left for $B={{V}_{A}}t$. Now according to the question, ${{V}_{B}}t={{V}_{A}}$. Also ${{V}_{A}}t=9{{V}_{B}}$. Therefore we get:
$\dfrac{{{V}_{B}}t}{{{V}_{A}}t}=\dfrac{4{{V}_{A}}}{9{{V}_{B}}}\Rightarrow \dfrac{{{V}_{A}}}{{{V}_{B}}}=\dfrac{3}{2}$
Complete step-by-step answer:
To solve this question, we will consider here a point C between the points P and Q such that the total distance between P and Q is d as shown:

Thus, from above figure we can see that the total distance, d=x+y. therefore:
$\Rightarrow y=d-x...........(i)$
We are given that, now A and B have met at point C. it is further given that the time taken for A to go from point c to point Q is 4 hours. Let us say that the speed of A is ${{V}_{A}}$ then the relation between the distance travelled, velocity and time elapsed is given as
\[\begin{align}
& speed=\dfrac{Total\,distance}{total\,time} \\
& {{V}_{A}}=y \\
& \Rightarrow y=4{{V}_{A}}............(ii) \\
\end{align}\]
Now, we are given that the time taken for B to go to point Q from point A is 9 hours. Thus, the relation between speed, distance travelled and total time taken is given by
$\begin{align}
& {{V}_{B}}=\dfrac{x}{9} \\
& \Rightarrow x=9{{V}_{B}}............(iii) \\
\end{align}$
Where ${{V}_{B}}$= velocity of B
Now, we are given that, initially A takes time t and reach the point C from point P. the same time is also taken by B to reach the point C from point Q. thus, we get the following relation:
$\begin{align}
& x={{V}_{A}}t.............(iv) \\
& y={{V}_{B}}t..............(v) \\
\end{align}$
Now we will divide the equation (iv) by equation (v). After dividing, we will get:
$\begin{align}
& \dfrac{x}{y}=\dfrac{{{V}_{A}}t}{{{V}_{B}}t} \\
& \Rightarrow \dfrac{x}{y}=\dfrac{{{V}_{A}}}{{{V}_{B}}}...........(vi) \\
\end{align}$
Now, we will put the values of x and y from equation (iv) and (v) into the equation (vi). After doing this, we will get following:
\[\dfrac{9{{V}_{B}}}{4{{V}_{A}}}=\dfrac{{{V}_{A}}}{{{V}_{B}}}\]
$\begin{align}
& \Rightarrow 9{{V}_{B}}^{2}=4{{V}_{A}}^{2} \\
& \Rightarrow 3{{V}_{B}}=2{{V}_{A}} \\
& \Rightarrow \dfrac{{{V}_{A}}}{{{V}_{B}}}=\dfrac{3}{2} \\
\end{align}$
So, the correct answer is “Option A”.
Note: Another way of doing this question is as follows when A and B meet at point C, then we can have following relation:
\[{{V}_{A}}t+{{V}_{B}}t=d\]
After meeting, the distance left for $A={{V}_{B}}t$ and the distance left for $B={{V}_{A}}t$. Now according to the question, ${{V}_{B}}t={{V}_{A}}$. Also ${{V}_{A}}t=9{{V}_{B}}$. Therefore we get:
$\dfrac{{{V}_{B}}t}{{{V}_{A}}t}=\dfrac{4{{V}_{A}}}{9{{V}_{B}}}\Rightarrow \dfrac{{{V}_{A}}}{{{V}_{B}}}=\dfrac{3}{2}$
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Truly whole mankind is one was declared by the Kannada class 10 social science CBSE

Explain the three major features of the shiwaliks class 10 social science CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

What are the public facilities provided by the government? Also explain each facility

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Question An example of homologous organs is a Our arm class 10 biology CBSE
