
A sonometer wire has a length l and tension T. If on reducing the tension to half of its original value and changing the length, the second harmonic becomes equal to the fundamental frequency of the first case, then the new length of the wire is
a) $l/\sqrt 2 $
b) $\sqrt 2 l$
c) $l/2$
d) $2l$
Answer
490.8k+ views
Hint: To solve this problem we will substitute the given values in the sonometer formula.
We need to use a sonometer working formula. i.e. \[{f_n} = \dfrac{n}{{2l}}\sqrt {\dfrac{T}{m}} \], where, \[{f_n}\] is the frequency of \[nth\]mode, \[n\] is the mode number, \[l\] is the length of the wire, \[T\] is the tension in the wire, \[m\] is the linear mass density or mass per unit length of the wire.
Complete step-by-step answer:
If the tension reduced to half, and length becomes \[{l_1}\] then from the above condition,
\[\dfrac{1}{{2l}}\sqrt {\dfrac{T}{m}} = \dfrac{2}{{2{l_1}}}\sqrt {\dfrac{T}{{2m}}} \]
As n is a constant value, we neglected n in the formula.
$ \Rightarrow {l_1} = 1\sqrt 2 $
Thus, the correct answer to this question is option (b).
Note: A sonometer is a device for demonstrating the relationship between the frequency of the sound produced by a plucked string, and the tension, length and mass per unit length of the string. These relationships are usually called Mersenne's laws after Marin Mersenne (1588-1648), who investigated and codified them. It is used to measure the tension, frequency or density of vibrations. In the field of medicine, it is used to test both hearing and bone density. The vibrations produced by the string works under the principle of resonance and is often represented as sinusoidal waves. This is very useful.
We need to use a sonometer working formula. i.e. \[{f_n} = \dfrac{n}{{2l}}\sqrt {\dfrac{T}{m}} \], where, \[{f_n}\] is the frequency of \[nth\]mode, \[n\] is the mode number, \[l\] is the length of the wire, \[T\] is the tension in the wire, \[m\] is the linear mass density or mass per unit length of the wire.
Complete step-by-step answer:
If the tension reduced to half, and length becomes \[{l_1}\] then from the above condition,
\[\dfrac{1}{{2l}}\sqrt {\dfrac{T}{m}} = \dfrac{2}{{2{l_1}}}\sqrt {\dfrac{T}{{2m}}} \]
As n is a constant value, we neglected n in the formula.
$ \Rightarrow {l_1} = 1\sqrt 2 $
Thus, the correct answer to this question is option (b).
Note: A sonometer is a device for demonstrating the relationship between the frequency of the sound produced by a plucked string, and the tension, length and mass per unit length of the string. These relationships are usually called Mersenne's laws after Marin Mersenne (1588-1648), who investigated and codified them. It is used to measure the tension, frequency or density of vibrations. In the field of medicine, it is used to test both hearing and bone density. The vibrations produced by the string works under the principle of resonance and is often represented as sinusoidal waves. This is very useful.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE

Dr BR Ambedkars fathers name was Ramaji Sakpal and class 10 social science CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the full form of POSCO class 10 social science CBSE
