
A solenoid of 10 Henry inductance and 2-ohm resistance, is connected to a 10-volt battery. In how much time the magnetic energy will be reached to \[1/4\text{th}\]of the maximum value.
A.3.5 sec
B.2.5 sec
C.5.5 sec
D.7.5 sec
Answer
583.2k+ views
Hint: The net magnetic field is the sum from each individual loop and is maximum in the middle of the solenoid because that point minimizes the average distance to each loop
Complete step-by-step solution:
Given,
Inductance, \[L=10\text{ H}\]
Resistance, \[r=2\text{ ohm}\]
Volt, \[V=10\text{ V}\]
Since, \[V=iR\]; where i is current
Therefore, current, \[{{i}_{o}}=\dfrac{10}{2}=5\text{A}\]
Now Maximum energy is,
\[\begin{gathered}
& {{E}_{0}}=\dfrac{1}{2}L\times {{i}_{o}} \\
& \text{ }=\dfrac{1}{2}\left( 10 \right)\times {{\left( 5 \right)}^{2}} \\
& \text{ }=125\text{ J} \\
\end{gathered}\]
Thus. \[1/4\text{th}\]of the total energy is,
\[\begin{gathered}
& E=\dfrac{1}{4}{{E}_{0}} \\
& \text{ }=\dfrac{{{E}_{0}}}{4} \\
& \text{ }=\dfrac{125}{4}\text{ J} \\
\end{gathered}\]
When \[E=\dfrac{125}{4}\text{ J}\], assume the current to be \[i\]
Now,
Current \[i\] is,
\[\begin{gathered}
& \text{ }E=\dfrac{1}{2}\times L\times {{i}^{2}} \\
& \Rightarrow \dfrac{125}{4}=\dfrac{1}{2}\times \left( 10 \right)\times {{i}^{2}} \\
& \Rightarrow \dfrac{125}{4}=5\times {{i}^{2}} \\
& \Rightarrow i=\dfrac{5}{2} \\
& \Rightarrow i=2.5\text{ A} \\
\end{gathered}\]
Now time taken to rise from 0 A to \[2.5\text{ A}\],
\[\begin{gathered}
& \text{ }i={{i}_{o}}\left[ 1-{{e}^{-Rt/L}} \right] \\
& \Rightarrow 2.5=5\left[ 1-{{e}^{-Rt/L}} \right] \\
& \Rightarrow {{e}^{-Rt/L}}=0.5 \\
& \Rightarrow \dfrac{-Rt}{L}={{\log }_{e}}\left( 0.5 \right) \\
& \Rightarrow \dfrac{Rt}{L}=0.693 \\
& \Rightarrow t=\dfrac{6.93}{2} \\
& \Rightarrow t=3.46\,\approx 3.5\text{ sec} \\
\end{gathered}\]
Hence, the correct answer is option A.
Note: while solving the formula, \[i={{i}_{o}}\left[ 1-{{e}^{-Rt/L}} \right]\] make sure that the exponential function is converted to logarithm function to make the solution easier to solve.
Complete step-by-step solution:
Given,
Inductance, \[L=10\text{ H}\]
Resistance, \[r=2\text{ ohm}\]
Volt, \[V=10\text{ V}\]
Since, \[V=iR\]; where i is current
Therefore, current, \[{{i}_{o}}=\dfrac{10}{2}=5\text{A}\]
Now Maximum energy is,
\[\begin{gathered}
& {{E}_{0}}=\dfrac{1}{2}L\times {{i}_{o}} \\
& \text{ }=\dfrac{1}{2}\left( 10 \right)\times {{\left( 5 \right)}^{2}} \\
& \text{ }=125\text{ J} \\
\end{gathered}\]
Thus. \[1/4\text{th}\]of the total energy is,
\[\begin{gathered}
& E=\dfrac{1}{4}{{E}_{0}} \\
& \text{ }=\dfrac{{{E}_{0}}}{4} \\
& \text{ }=\dfrac{125}{4}\text{ J} \\
\end{gathered}\]
When \[E=\dfrac{125}{4}\text{ J}\], assume the current to be \[i\]
Now,
Current \[i\] is,
\[\begin{gathered}
& \text{ }E=\dfrac{1}{2}\times L\times {{i}^{2}} \\
& \Rightarrow \dfrac{125}{4}=\dfrac{1}{2}\times \left( 10 \right)\times {{i}^{2}} \\
& \Rightarrow \dfrac{125}{4}=5\times {{i}^{2}} \\
& \Rightarrow i=\dfrac{5}{2} \\
& \Rightarrow i=2.5\text{ A} \\
\end{gathered}\]
Now time taken to rise from 0 A to \[2.5\text{ A}\],
\[\begin{gathered}
& \text{ }i={{i}_{o}}\left[ 1-{{e}^{-Rt/L}} \right] \\
& \Rightarrow 2.5=5\left[ 1-{{e}^{-Rt/L}} \right] \\
& \Rightarrow {{e}^{-Rt/L}}=0.5 \\
& \Rightarrow \dfrac{-Rt}{L}={{\log }_{e}}\left( 0.5 \right) \\
& \Rightarrow \dfrac{Rt}{L}=0.693 \\
& \Rightarrow t=\dfrac{6.93}{2} \\
& \Rightarrow t=3.46\,\approx 3.5\text{ sec} \\
\end{gathered}\]
Hence, the correct answer is option A.
Note: while solving the formula, \[i={{i}_{o}}\left[ 1-{{e}^{-Rt/L}} \right]\] make sure that the exponential function is converted to logarithm function to make the solution easier to solve.
Recently Updated Pages
Questions & Answers - Ask your doubts

Master Class 9 Social Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Trending doubts
The average rainfall in India is A 105cm B 90cm C 120cm class 10 biology CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Who Won 36 Oscar Awards? Record Holder Revealed

Indias first jute mill was established in 1854 in A class 10 social science CBSE

Indias first jute mill was established in 1854 in A class 10 social science CBSE

