Answer
Verified
397.2k+ views
Hint: Electric dipole is a couple of opposite charges given by q and -q. they are separated by the distance d. In this given space the direction of the dipole is always from -q to positive charge q. In the question we need to find potential at distance r from center. It is making an angle $ \theta $ with the axis.
Formula Used:
$
V = \dfrac{q}{{4\pi {\varepsilon _0}R}} \\
\cos \theta = \dfrac{{{y^2} + {z^2} - {x^2}}}{{2yz}} \\
(1 + {x^n}) = 1 + nx\,for\,x < < 1 \\
$
Complete step-by-step solution:
First of all we have the dipole with charges q and -q at the ends.
The potential at the distance ‘r’ can be found out as follows:
First from the figure we will get,
\[
USING, \\
\cos \theta = \dfrac{{{y^2} + {z^2} - {x^2}}}{{2yz}} \\
\]
Cosine formula for any triangle.
Here, z is hypotenuse.
According to our dimensions
$
\cos \theta = \dfrac{{{r^2} + {a^2} - {r_1}^2}}{{2ra}} \\
\Rightarrow {r_1}^2 = {r^2} + {a^2} - 2ra\cos \theta \\
$
By taking square root on both sides we get,
$
{r_1} = {({r^2} + {a^2} - 2ra\cos \theta )^{\dfrac{1}{2}}} \\
taking\,'r'\,common \\
\Rightarrow {r_1} = r{\left[ {1 - \dfrac{a}{r}\cos \theta } \right]^{\dfrac{1}{2}}} \\
$
Now using the identity,
$ (1 + {x^n}) = 1 + nx\,for\,x < < 1$
We get,
$
{r_1} = r\left[ {1 - \dfrac{a}{r}\cos \theta } \right] \\
this\,gives \\
\Rightarrow {r_1} = r - a\cos \theta \\
\Rightarrow {r_2} = r + a\cos \theta \\
$
We know for the potential we need to find individual potentials from each charge and add them. So,
$
V = \dfrac{q}{{4\pi {\varepsilon _0}R}} \\
adding\,all \\
\Rightarrow V = \dfrac{q}{{4\pi {\varepsilon _0}{r_1}}} + \dfrac{q}{{4\pi {\varepsilon _0}{r_2}}} \\
\\
$
Putting the values taken found out above and solving,
$
\Rightarrow \dfrac{q}{{4\pi {\varepsilon _0}}}\left[ {\dfrac{1}{{r - a\cos \theta }} - \dfrac{1}{{r + a\cos \theta }}} \right] \\
\Rightarrow \dfrac{q}{{4\pi {\varepsilon _0}}}\left[ {\dfrac{{r + a\cos \theta - r + a\cos \theta }}{{{r^2} - {a^2}{{\cos }^2}\theta }}} \right] \\
$
Further solving the equations and neglecting a as it is very small we get
$
As\,p = q(2a) \\
\Rightarrow V = \dfrac{{p\cos \theta }}{{4\pi {\varepsilon _0}({r^2} - {a^2}{{\cos }^2}\theta )}} \\
\Rightarrow V = \dfrac{{p\cos \theta }}{{4\pi {\varepsilon _0}({r^2})}}.....(if\,a\,is\,small) \\
$
Note: Potential at the point is always an addition of potential due to all charges/dipoles. Potential negative means whatever the system is under study it is stable. If potential is positive it is an unstable system. Force varies inversely with square of the distance and potential inversely with first power of distance.
Formula Used:
$
V = \dfrac{q}{{4\pi {\varepsilon _0}R}} \\
\cos \theta = \dfrac{{{y^2} + {z^2} - {x^2}}}{{2yz}} \\
(1 + {x^n}) = 1 + nx\,for\,x < < 1 \\
$
Complete step-by-step solution:
First of all we have the dipole with charges q and -q at the ends.
The potential at the distance ‘r’ can be found out as follows:
First from the figure we will get,
\[
USING, \\
\cos \theta = \dfrac{{{y^2} + {z^2} - {x^2}}}{{2yz}} \\
\]
Cosine formula for any triangle.
Here, z is hypotenuse.
According to our dimensions
$
\cos \theta = \dfrac{{{r^2} + {a^2} - {r_1}^2}}{{2ra}} \\
\Rightarrow {r_1}^2 = {r^2} + {a^2} - 2ra\cos \theta \\
$
By taking square root on both sides we get,
$
{r_1} = {({r^2} + {a^2} - 2ra\cos \theta )^{\dfrac{1}{2}}} \\
taking\,'r'\,common \\
\Rightarrow {r_1} = r{\left[ {1 - \dfrac{a}{r}\cos \theta } \right]^{\dfrac{1}{2}}} \\
$
Now using the identity,
$ (1 + {x^n}) = 1 + nx\,for\,x < < 1$
We get,
$
{r_1} = r\left[ {1 - \dfrac{a}{r}\cos \theta } \right] \\
this\,gives \\
\Rightarrow {r_1} = r - a\cos \theta \\
\Rightarrow {r_2} = r + a\cos \theta \\
$
We know for the potential we need to find individual potentials from each charge and add them. So,
$
V = \dfrac{q}{{4\pi {\varepsilon _0}R}} \\
adding\,all \\
\Rightarrow V = \dfrac{q}{{4\pi {\varepsilon _0}{r_1}}} + \dfrac{q}{{4\pi {\varepsilon _0}{r_2}}} \\
\\
$
Putting the values taken found out above and solving,
$
\Rightarrow \dfrac{q}{{4\pi {\varepsilon _0}}}\left[ {\dfrac{1}{{r - a\cos \theta }} - \dfrac{1}{{r + a\cos \theta }}} \right] \\
\Rightarrow \dfrac{q}{{4\pi {\varepsilon _0}}}\left[ {\dfrac{{r + a\cos \theta - r + a\cos \theta }}{{{r^2} - {a^2}{{\cos }^2}\theta }}} \right] \\
$
Further solving the equations and neglecting a as it is very small we get
$
As\,p = q(2a) \\
\Rightarrow V = \dfrac{{p\cos \theta }}{{4\pi {\varepsilon _0}({r^2} - {a^2}{{\cos }^2}\theta )}} \\
\Rightarrow V = \dfrac{{p\cos \theta }}{{4\pi {\varepsilon _0}({r^2})}}.....(if\,a\,is\,small) \\
$
Note: Potential at the point is always an addition of potential due to all charges/dipoles. Potential negative means whatever the system is under study it is stable. If potential is positive it is an unstable system. Force varies inversely with square of the distance and potential inversely with first power of distance.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
What are the major means of transport Explain each class 12 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE