Answer
Verified
448.5k+ views
Hint: Compton Effect is the increase in wavelength of X-rays and other energetic electromagnetic radiations that have been elastically scattered by electrons; it is a principal way in which radiant energy is absorbed in matter. Using this, find the wavelength of the scattered photon and then its energy.
Complete step by step answer:
We are given that a photon of energy 1.02MeV undergoes Compton scattering from a block through ${180^ \circ }$
We have to find the energy of the scattered photon.
By Compton Effect, the wavelength shift experienced by the photon is
${\lambda ^1} - \lambda = \dfrac{h}{{{m_o}c}}\left( {1 - \cos \theta } \right)$, where h is the Planck constant, $\lambda ,{\lambda ^1}$ are the wavelengths of incident and scattered rays, m is the mass of the photon and c is the speed of the photon (light).
$
{\lambda ^1} - \lambda = \dfrac{h}{{{m_o}c}}\left( {1 - \cos \theta } \right) \\
\theta = {180^ \circ } \\
\cos {180^ \circ } = - 1 \\
$
$
\Rightarrow {\lambda ^1} - \lambda = \dfrac{h}{{{m_o}c}}\left( {1 + 1} \right) \\
\dfrac{h}{{{m_o}c}} = 0.0243A \\
\Rightarrow {\lambda ^1} - \lambda = 2 \times 0.0243 \times {10^{ - 10}}m \\
\Rightarrow {\lambda ^1} - \lambda = 4.86 \times {10^{ - 12}}m \\
\Rightarrow {\lambda ^1} - \lambda = 4.86pm \to eq(1) \\
$
Wavelength of the incident ray is
$
E = hf \\
f = \dfrac{c}{\lambda } \\
\Rightarrow E = \dfrac{{hc}}{\lambda } \\
E = 1.02MeV \\
\Rightarrow 1.02MeV = \dfrac{{hc}}{\lambda } \\
\Rightarrow \lambda = \dfrac{{hc}}{{1.02MeV}} \\
hc = 1.24 \\
\Rightarrow \lambda = \dfrac{{1.24}}{{1.02}} \\
\Rightarrow \lambda = 1.21pm \\
$
Substitute the wavelength of incident ray in equation 1 to find the wavelength of the scattered ray.
$
{\lambda ^1} - \lambda = 4.86pm \\
\lambda = 1.21pm \\
\Rightarrow {\lambda ^1} = 4.86 + 1.21 \\
\Rightarrow {\lambda ^1} = 6.07pm \\
$
Energy of the scattered photon will be
$
E = hf = \dfrac{{hc}}{\lambda } \\
\lambda = 6.07pm \\
\Rightarrow E = \dfrac{{1.24}}{{6.07}} \\
\Rightarrow E = 0.2043MeV \\
$
The energy of the scattered photon is 0.2043MeV
The correct option is Option A.
Note:A photon is a tiny particle that comprises waves of electromagnetic radiation. Photons have no charge, no resting mass, and travel at the speed of light. The value of Planck’s constant is $6.626 \times {10^{ - 34}}Js$, the value of velocity of a photon is $3 \times {10^8}m/s$. Among the units commonly used to denote photon energy are the electron volt (eV) and the joules.
Complete step by step answer:
We are given that a photon of energy 1.02MeV undergoes Compton scattering from a block through ${180^ \circ }$
We have to find the energy of the scattered photon.
By Compton Effect, the wavelength shift experienced by the photon is
${\lambda ^1} - \lambda = \dfrac{h}{{{m_o}c}}\left( {1 - \cos \theta } \right)$, where h is the Planck constant, $\lambda ,{\lambda ^1}$ are the wavelengths of incident and scattered rays, m is the mass of the photon and c is the speed of the photon (light).
$
{\lambda ^1} - \lambda = \dfrac{h}{{{m_o}c}}\left( {1 - \cos \theta } \right) \\
\theta = {180^ \circ } \\
\cos {180^ \circ } = - 1 \\
$
$
\Rightarrow {\lambda ^1} - \lambda = \dfrac{h}{{{m_o}c}}\left( {1 + 1} \right) \\
\dfrac{h}{{{m_o}c}} = 0.0243A \\
\Rightarrow {\lambda ^1} - \lambda = 2 \times 0.0243 \times {10^{ - 10}}m \\
\Rightarrow {\lambda ^1} - \lambda = 4.86 \times {10^{ - 12}}m \\
\Rightarrow {\lambda ^1} - \lambda = 4.86pm \to eq(1) \\
$
Wavelength of the incident ray is
$
E = hf \\
f = \dfrac{c}{\lambda } \\
\Rightarrow E = \dfrac{{hc}}{\lambda } \\
E = 1.02MeV \\
\Rightarrow 1.02MeV = \dfrac{{hc}}{\lambda } \\
\Rightarrow \lambda = \dfrac{{hc}}{{1.02MeV}} \\
hc = 1.24 \\
\Rightarrow \lambda = \dfrac{{1.24}}{{1.02}} \\
\Rightarrow \lambda = 1.21pm \\
$
Substitute the wavelength of incident ray in equation 1 to find the wavelength of the scattered ray.
$
{\lambda ^1} - \lambda = 4.86pm \\
\lambda = 1.21pm \\
\Rightarrow {\lambda ^1} = 4.86 + 1.21 \\
\Rightarrow {\lambda ^1} = 6.07pm \\
$
Energy of the scattered photon will be
$
E = hf = \dfrac{{hc}}{\lambda } \\
\lambda = 6.07pm \\
\Rightarrow E = \dfrac{{1.24}}{{6.07}} \\
\Rightarrow E = 0.2043MeV \\
$
The energy of the scattered photon is 0.2043MeV
The correct option is Option A.
Note:A photon is a tiny particle that comprises waves of electromagnetic radiation. Photons have no charge, no resting mass, and travel at the speed of light. The value of Planck’s constant is $6.626 \times {10^{ - 34}}Js$, the value of velocity of a photon is $3 \times {10^8}m/s$. Among the units commonly used to denote photon energy are the electron volt (eV) and the joules.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE