
A photon of energy 1.02MeV undergoes Compton scattering from a block through ${180^ \circ }$. Then the energy of the scattered photon is (assume the values of $h,{m_o},c$ )
A. 0.2043MeV
B. 0.103MeV
C. 0.412MeV
D. Zero
Answer
522k+ views
Hint: Compton Effect is the increase in wavelength of X-rays and other energetic electromagnetic radiations that have been elastically scattered by electrons; it is a principal way in which radiant energy is absorbed in matter. Using this, find the wavelength of the scattered photon and then its energy.
Complete step by step answer:
We are given that a photon of energy 1.02MeV undergoes Compton scattering from a block through ${180^ \circ }$
We have to find the energy of the scattered photon.
By Compton Effect, the wavelength shift experienced by the photon is
${\lambda ^1} - \lambda = \dfrac{h}{{{m_o}c}}\left( {1 - \cos \theta } \right)$, where h is the Planck constant, $\lambda ,{\lambda ^1}$ are the wavelengths of incident and scattered rays, m is the mass of the photon and c is the speed of the photon (light).
$
{\lambda ^1} - \lambda = \dfrac{h}{{{m_o}c}}\left( {1 - \cos \theta } \right) \\
\theta = {180^ \circ } \\
\cos {180^ \circ } = - 1 \\
$
$
\Rightarrow {\lambda ^1} - \lambda = \dfrac{h}{{{m_o}c}}\left( {1 + 1} \right) \\
\dfrac{h}{{{m_o}c}} = 0.0243A \\
\Rightarrow {\lambda ^1} - \lambda = 2 \times 0.0243 \times {10^{ - 10}}m \\
\Rightarrow {\lambda ^1} - \lambda = 4.86 \times {10^{ - 12}}m \\
\Rightarrow {\lambda ^1} - \lambda = 4.86pm \to eq(1) \\
$
Wavelength of the incident ray is
$
E = hf \\
f = \dfrac{c}{\lambda } \\
\Rightarrow E = \dfrac{{hc}}{\lambda } \\
E = 1.02MeV \\
\Rightarrow 1.02MeV = \dfrac{{hc}}{\lambda } \\
\Rightarrow \lambda = \dfrac{{hc}}{{1.02MeV}} \\
hc = 1.24 \\
\Rightarrow \lambda = \dfrac{{1.24}}{{1.02}} \\
\Rightarrow \lambda = 1.21pm \\
$
Substitute the wavelength of incident ray in equation 1 to find the wavelength of the scattered ray.
$
{\lambda ^1} - \lambda = 4.86pm \\
\lambda = 1.21pm \\
\Rightarrow {\lambda ^1} = 4.86 + 1.21 \\
\Rightarrow {\lambda ^1} = 6.07pm \\
$
Energy of the scattered photon will be
$
E = hf = \dfrac{{hc}}{\lambda } \\
\lambda = 6.07pm \\
\Rightarrow E = \dfrac{{1.24}}{{6.07}} \\
\Rightarrow E = 0.2043MeV \\
$
The energy of the scattered photon is 0.2043MeV
The correct option is Option A.
Note:A photon is a tiny particle that comprises waves of electromagnetic radiation. Photons have no charge, no resting mass, and travel at the speed of light. The value of Planck’s constant is $6.626 \times {10^{ - 34}}Js$, the value of velocity of a photon is $3 \times {10^8}m/s$. Among the units commonly used to denote photon energy are the electron volt (eV) and the joules.
Complete step by step answer:
We are given that a photon of energy 1.02MeV undergoes Compton scattering from a block through ${180^ \circ }$
We have to find the energy of the scattered photon.
By Compton Effect, the wavelength shift experienced by the photon is
${\lambda ^1} - \lambda = \dfrac{h}{{{m_o}c}}\left( {1 - \cos \theta } \right)$, where h is the Planck constant, $\lambda ,{\lambda ^1}$ are the wavelengths of incident and scattered rays, m is the mass of the photon and c is the speed of the photon (light).
$
{\lambda ^1} - \lambda = \dfrac{h}{{{m_o}c}}\left( {1 - \cos \theta } \right) \\
\theta = {180^ \circ } \\
\cos {180^ \circ } = - 1 \\
$
$
\Rightarrow {\lambda ^1} - \lambda = \dfrac{h}{{{m_o}c}}\left( {1 + 1} \right) \\
\dfrac{h}{{{m_o}c}} = 0.0243A \\
\Rightarrow {\lambda ^1} - \lambda = 2 \times 0.0243 \times {10^{ - 10}}m \\
\Rightarrow {\lambda ^1} - \lambda = 4.86 \times {10^{ - 12}}m \\
\Rightarrow {\lambda ^1} - \lambda = 4.86pm \to eq(1) \\
$
Wavelength of the incident ray is
$
E = hf \\
f = \dfrac{c}{\lambda } \\
\Rightarrow E = \dfrac{{hc}}{\lambda } \\
E = 1.02MeV \\
\Rightarrow 1.02MeV = \dfrac{{hc}}{\lambda } \\
\Rightarrow \lambda = \dfrac{{hc}}{{1.02MeV}} \\
hc = 1.24 \\
\Rightarrow \lambda = \dfrac{{1.24}}{{1.02}} \\
\Rightarrow \lambda = 1.21pm \\
$
Substitute the wavelength of incident ray in equation 1 to find the wavelength of the scattered ray.
$
{\lambda ^1} - \lambda = 4.86pm \\
\lambda = 1.21pm \\
\Rightarrow {\lambda ^1} = 4.86 + 1.21 \\
\Rightarrow {\lambda ^1} = 6.07pm \\
$
Energy of the scattered photon will be
$
E = hf = \dfrac{{hc}}{\lambda } \\
\lambda = 6.07pm \\
\Rightarrow E = \dfrac{{1.24}}{{6.07}} \\
\Rightarrow E = 0.2043MeV \\
$
The energy of the scattered photon is 0.2043MeV
The correct option is Option A.
Note:A photon is a tiny particle that comprises waves of electromagnetic radiation. Photons have no charge, no resting mass, and travel at the speed of light. The value of Planck’s constant is $6.626 \times {10^{ - 34}}Js$, the value of velocity of a photon is $3 \times {10^8}m/s$. Among the units commonly used to denote photon energy are the electron volt (eV) and the joules.
Recently Updated Pages
Physics and Measurement Mock Test 2025 – Practice Questions & Answers

NCERT Solutions For Class 5 English Marigold - The Little Bully

NCERT Solutions For Class 12 Maths Three Dimensional Geometry Exercise 11.1

NCERT Solutions For Class 11 English Woven Words (Poem) - Ajamil And The Tigers

NCERT Solutions For Class 6 Hindi Durva - Bhaaloo

NCERT Solutions For Class 12 Physics In Hindi - Wave Optics

Trending doubts
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

How many single covalent bonds can nitrogen form class 12 chemistry CBSE

What is the feedback mechanism of hormone regulation class 12 biology CBSE

What is the structure of K3CrO8 and what is the oxidation class 12 chemistry CBSE

The compound which reacts fastest with Lucas reagent class 12 chemistry CBSE

A ball is thrown vertically upwards After some time class 12 physics CBSE
