
A letter lock consists of three rings each marked with $ 5 $ different letters. Number of maximum attempts to open the lock is:
A. $ 124 $
B. $ 125 $
C. $ 120 $
D. $ 75 $
Answer
530.7k+ views
Hint: Find the number of ways of choosing the letter for each of the three rings and then multiply the number of ways to open all the locks of the letter lock. We can also use concepts of permutations and combinations to solve such problems.
Complete step-by-step answer:
A letter lock consists of three rings each marked with $ 5 $ different letters.
As per given that the letter lock consists of three rings each marked with $ 5 $ different letters.
So, the number of ways for opening the first ring is equal to $ 5 $ as it is marked with $ 5 $ different letters.
In a similar manner, the number of ways for opening the second ring is equal to $ 5 $ as it is marked with $ 5 $ different letters.
In a similar manner, the number of ways for opening the third ring is equal to $ 5 $ as it is marked with $ 5 $ different letters.
So, the total number of ways of opening the letter lock will be the product of all the number of ways for opening the rings.
So, the number of ways for opening the letter lock is equal to $ 5 \times 5 \times 5 = 125 $ .
So, the number of maximum attempts to open the lock is equal to $ 125 $
So, the correct answer is “Option B”.
Note: Use the multiplication rule to find the number of attempts to unlock the letter lock by checking the number of ways to open each ring of the lock and then multiply the number of ways for each ring.
Complete step-by-step answer:
A letter lock consists of three rings each marked with $ 5 $ different letters.
As per given that the letter lock consists of three rings each marked with $ 5 $ different letters.
So, the number of ways for opening the first ring is equal to $ 5 $ as it is marked with $ 5 $ different letters.
In a similar manner, the number of ways for opening the second ring is equal to $ 5 $ as it is marked with $ 5 $ different letters.
In a similar manner, the number of ways for opening the third ring is equal to $ 5 $ as it is marked with $ 5 $ different letters.
So, the total number of ways of opening the letter lock will be the product of all the number of ways for opening the rings.
So, the number of ways for opening the letter lock is equal to $ 5 \times 5 \times 5 = 125 $ .
So, the number of maximum attempts to open the lock is equal to $ 125 $
So, the correct answer is “Option B”.
Note: Use the multiplication rule to find the number of attempts to unlock the letter lock by checking the number of ways to open each ring of the lock and then multiply the number of ways for each ring.
Recently Updated Pages
Choose the exact meaning of the idiomphrase Blue blood class 10 english CBSE

If A30 circ a7 b8 in triangle ABC then prove that B class 10 maths CBSE

What happens when i Magnesium is burnt in air ii Quick class 10 chemistry CBSE

How do you solve 5x 2y 48 4x and 6x + 7y x + 6y + 33 class 10 maths CBSE

a What is power b Define 1 watt of power c A lamp consumes class 10 physics CBSE

Complete the sentence using the appropriate option class 10 english CBSE

Trending doubts
Write an application to the principal requesting five class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the median of the first 10 natural numbers class 10 maths CBSE

Write examples of herbivores carnivores and omnivo class 10 biology CBSE
