
A convex lens of focal length $25\,cm$ and a concave lens of focal length $10\,cm$ are placed in contact with each other.
(a) What is the power of this combination?
(b) What is the focal length of this combination?
(c) Is this combination converging or diverging?
Answer
467.1k+ views
Hint:In order to solve this question, we will use the general formula of finding the net focal length of combination of lenses and net power of combination of lenses. The focal length of a convex lens is positive since it’s a converging lens and the focal length of a concave lens is negative because concave lens is a diverging lens.
Formula used:
Power and focal length of a lens is related as $P = \dfrac{1}{f}$ .
Complete step by step answer:
According to the question, Focal length of convex lens is ${f_{convex}} = + 25cm = + 0.25m$
Power of this lens will be ${P_{convex}} = \dfrac{1}{{0.25}}$
${P_{convex}} = 4D$
And, focal length of concave lens is ${f_{concave}} = - 10cm = - 0.1m$
Power of this lens will be ${P_{concave}} = - \dfrac{1}{{0.1}}$
${P_{concave}} = - 10D$
(a) Net power of the combination can be calculated as
${P_{net}} = {P_{convex}} + {P_{concave}}$
Putting the values of parameters we get,
${P_{net}} = - 10 + 4$
$\therefore {P_{net}} = - 6\,D$
(b) Net focal length of the combination can be found as
Since net power we have calculated is ${P_{net}} = - 6D$
Then, net focal length can be written as ${f_{net}} = \dfrac{1}{{{P_{net}}}}$
$ \Rightarrow {f_{net}} = - \dfrac{1}{6}$
$\therefore {f_{net}} = - 0.1666\,m = - 16.66\,cm$
Hence, the focal length of a combination of such systems is $ - 16.66\,cm$.
(c) Since, the net focal length of the combination of the system is $ - 16.66\,cm$ which is negative and the focal length of concave lens is negative which is a diverging lens hence, the system will behave as a diverging lens.
Note: It should be remembered that, the unit of power is Dioptre and denoted by $D$.$1D$ is the ratio of lens having focal length of $1m$ and basic unit of conversions used are $1m = 100cm$ and if two lenses were kept at a distance of x meter then net focal length will be calculated by using the formula $\dfrac{1}{f} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}} - \dfrac{x}{{{f_1}{f_2}}}.$
Formula used:
Power and focal length of a lens is related as $P = \dfrac{1}{f}$ .
Complete step by step answer:
According to the question, Focal length of convex lens is ${f_{convex}} = + 25cm = + 0.25m$
Power of this lens will be ${P_{convex}} = \dfrac{1}{{0.25}}$
${P_{convex}} = 4D$
And, focal length of concave lens is ${f_{concave}} = - 10cm = - 0.1m$
Power of this lens will be ${P_{concave}} = - \dfrac{1}{{0.1}}$
${P_{concave}} = - 10D$
(a) Net power of the combination can be calculated as
${P_{net}} = {P_{convex}} + {P_{concave}}$
Putting the values of parameters we get,
${P_{net}} = - 10 + 4$
$\therefore {P_{net}} = - 6\,D$
(b) Net focal length of the combination can be found as
Since net power we have calculated is ${P_{net}} = - 6D$
Then, net focal length can be written as ${f_{net}} = \dfrac{1}{{{P_{net}}}}$
$ \Rightarrow {f_{net}} = - \dfrac{1}{6}$
$\therefore {f_{net}} = - 0.1666\,m = - 16.66\,cm$
Hence, the focal length of a combination of such systems is $ - 16.66\,cm$.
(c) Since, the net focal length of the combination of the system is $ - 16.66\,cm$ which is negative and the focal length of concave lens is negative which is a diverging lens hence, the system will behave as a diverging lens.
Note: It should be remembered that, the unit of power is Dioptre and denoted by $D$.$1D$ is the ratio of lens having focal length of $1m$ and basic unit of conversions used are $1m = 100cm$ and if two lenses were kept at a distance of x meter then net focal length will be calculated by using the formula $\dfrac{1}{f} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}} - \dfrac{x}{{{f_1}{f_2}}}.$
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Trending doubts
When was the first election held in India a 194748 class 12 sst CBSE

Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What are the monomers and polymers of carbohydrate class 12 chemistry CBSE

Amount of light entering the eye is controlled by A class 12 physics CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
