
What is the value of $\dfrac{1}{{\cos 80}} - \dfrac{{\sqrt 3 }}{{\sin 80}}$?
A. $\sqrt 2 $
B. $\sqrt 3 $
C. $2$
D. $4$
Answer
198.3k+ views
Hint: We know that $\sin 60 = \dfrac{{\sqrt 3 }}{2}$ and $\cos 60 = \dfrac{1}{2}$so if we take LCM and divide and multiply by 2 in denominator and numerator ,we can get terms like $\sin A\cos B - \cos A\sin B$ where $A = 60$ and $B = 80$.From here we can simplify the fraction using some basic formula of trigonometry to get answer.
Formula Used:
1.$\sin (A - B) = \sin A\cos B - \cos A\sin B$
2.$\sin 2A = 2\sin A\cos A$
3.$\sin (180 - \theta ) = \sin \theta $
Complete step by step solution:
Given -$\dfrac{1}{{\cos 80}} - \dfrac{{\sqrt 3 }}{{\sin 80}}$
Taking LCM and simplifying the numerator and denominator
$\dfrac{1}{{\cos 80}} - \dfrac{{\sqrt 3 }}{{\sin 80}} = \dfrac{{\sin 80 - \sqrt 3 \cos 80}}{{\cos 80\sin 80}}$
Multiplying and dividing by 2
$\dfrac{1}{{\cos 80}} - \dfrac{{\sqrt 3 }}{{\sin 80}} = \dfrac{2}{2}\dfrac{{\sin 80 - \sqrt 3 \cos 80}}{{\cos 80\sin 80}}$
Rearranging the terms of numerator and denominator
$\dfrac{1}{{\cos 80}} - \dfrac{{\sqrt 3 }}{{\sin 80}} = \dfrac{1}{2}\left( {\sin 80 - \sqrt 3 \cos 80} \right)*\dfrac{2}{{\sin 80\cos 80}}$
On simplifying the terms on RHS
RHS=$\left( {\dfrac{1}{2}\sin 80 - \dfrac{{\sqrt 3 }}{2}\cos 80} \right)\dfrac{2}{{\sin 80\cos 80}}$
RHS=$\left( {\cos 60\sin 80 - \sin 60\cos 80} \right)\dfrac{2}{{\sin 80\cos 80}}$
Using the formula $\sin (A - B) = \sin A\cos B - \cos A\sin B$
RHS=$\left( {\sin (80 - 60)} \right)\dfrac{2}{{\sin 80\cos 80}}$
⇒RHS=$\sin 20\dfrac{2}{{\sin 80\cos 80}}$
⇒RHS=$\dfrac{{2\sin 20}}{{\sin 80\cos 80}}$
We know that $\sin 2A = 2\sin A\cos A$
So $\sin A\cos A = \dfrac{{\sin 2A}}{2}$
Hence $\sin 80\cos 80 = \dfrac{{\sin 2 \times 80}}{2}$
$ \Rightarrow \sin 80\cos 80 = \dfrac{{\sin 160}}{2}$
Now RHS =$\sin 20 \times \dfrac{2}{{\dfrac{{\sin 160}}{2}}}$
$4\dfrac{{\sin 20}}{{\sin 180}}$⇒RHS =$4\dfrac{{\sin 20}}{{\sin 160}}$
We know that $\sin (180 - \theta ) = \sin \theta $,put $\theta = 20$in the identity
Then $\sin (180 - 20) = \sin 20$
$ \Rightarrow \sin 160 = \sin 20$
So RHS =4
∴ $\dfrac{1}{{\cos 80}} - \dfrac{{\sqrt 3 }}{{\sin 80}} = 4$
Option ‘D’ is correct
Note: In the questions involving complicated trigonometric values which are not known to us ,approach is try to manipulate the question by dividing both side of numerator and denominator by a suitable number or applying trigonometric formulas to convert them into a known value and then solve the problem.
Formula Used:
1.$\sin (A - B) = \sin A\cos B - \cos A\sin B$
2.$\sin 2A = 2\sin A\cos A$
3.$\sin (180 - \theta ) = \sin \theta $
Complete step by step solution:
Given -$\dfrac{1}{{\cos 80}} - \dfrac{{\sqrt 3 }}{{\sin 80}}$
Taking LCM and simplifying the numerator and denominator
$\dfrac{1}{{\cos 80}} - \dfrac{{\sqrt 3 }}{{\sin 80}} = \dfrac{{\sin 80 - \sqrt 3 \cos 80}}{{\cos 80\sin 80}}$
Multiplying and dividing by 2
$\dfrac{1}{{\cos 80}} - \dfrac{{\sqrt 3 }}{{\sin 80}} = \dfrac{2}{2}\dfrac{{\sin 80 - \sqrt 3 \cos 80}}{{\cos 80\sin 80}}$
Rearranging the terms of numerator and denominator
$\dfrac{1}{{\cos 80}} - \dfrac{{\sqrt 3 }}{{\sin 80}} = \dfrac{1}{2}\left( {\sin 80 - \sqrt 3 \cos 80} \right)*\dfrac{2}{{\sin 80\cos 80}}$
On simplifying the terms on RHS
RHS=$\left( {\dfrac{1}{2}\sin 80 - \dfrac{{\sqrt 3 }}{2}\cos 80} \right)\dfrac{2}{{\sin 80\cos 80}}$
RHS=$\left( {\cos 60\sin 80 - \sin 60\cos 80} \right)\dfrac{2}{{\sin 80\cos 80}}$
Using the formula $\sin (A - B) = \sin A\cos B - \cos A\sin B$
RHS=$\left( {\sin (80 - 60)} \right)\dfrac{2}{{\sin 80\cos 80}}$
⇒RHS=$\sin 20\dfrac{2}{{\sin 80\cos 80}}$
⇒RHS=$\dfrac{{2\sin 20}}{{\sin 80\cos 80}}$
We know that $\sin 2A = 2\sin A\cos A$
So $\sin A\cos A = \dfrac{{\sin 2A}}{2}$
Hence $\sin 80\cos 80 = \dfrac{{\sin 2 \times 80}}{2}$
$ \Rightarrow \sin 80\cos 80 = \dfrac{{\sin 160}}{2}$
Now RHS =$\sin 20 \times \dfrac{2}{{\dfrac{{\sin 160}}{2}}}$
$4\dfrac{{\sin 20}}{{\sin 180}}$⇒RHS =$4\dfrac{{\sin 20}}{{\sin 160}}$
We know that $\sin (180 - \theta ) = \sin \theta $,put $\theta = 20$in the identity
Then $\sin (180 - 20) = \sin 20$
$ \Rightarrow \sin 160 = \sin 20$
So RHS =4
∴ $\dfrac{1}{{\cos 80}} - \dfrac{{\sqrt 3 }}{{\sin 80}} = 4$
Option ‘D’ is correct
Note: In the questions involving complicated trigonometric values which are not known to us ,approach is try to manipulate the question by dividing both side of numerator and denominator by a suitable number or applying trigonometric formulas to convert them into a known value and then solve the problem.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main

For a symmetrical distribution Q1 25 and Q3 45 Q1 and class 10 maths JEE_Main

The lengths of the sides of a triangle is 5 m 12 decameter class 10 maths JEE_Main

If x is real then the maximum and minimum values of class 10 maths JEE_Main

The value of p for which both the roots of the equation class 10 maths JEE_Main

The image of the point left 4 3 right with respect class 10 maths JEE_Main

Trending doubts
JEE Main 2026: Exam Date, Syllabus, Eligibility, Application Form & Preparation Tips

JEE Main Syllabus 2026 (Updated)

JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Previous Year Question Paper with Answer Keys and Solutions

JEE Main Physics Syllabus 2026 - Complete Topic-Wise Guide

JEE Main Marks Vs Percentile Vs Rank 2025: Calculate Percentile Using Marks

Other Pages
NCERT Solutions for Class 10 Maths Chapter 11 Areas Related to Circles 2025-26

NCERT Solutions For Class 10 Maths Chapter 12 Surface Area And Volume

NCERT Solutions for Class 10 Maths Chapter Chapter 13 Statistics

All Mensuration Formulas with Examples and Quick Revision

NCERT Solutions for Class 10 Maths Chapter 15 Probability

CBSE Class 10 Maths 2025 Set 1 (Code 430/3/1) Basic Paper with Solutions
