
The initial phase angle for $i = 10\sin \omega t + 8\cos \omega t$ is
(A) ${\tan ^{ - 1}}\left( {\dfrac{4}{5}} \right)$
(B) ${\tan ^{ - 1}}\left( {\dfrac{5}{4}} \right)$
(C) ${\sin ^{ - 1}}\left( {\dfrac{4}{5}} \right)$
(D) ${90^0}$
Answer
152.1k+ views
Hint: We are given with an equation and are asked to find the initial phase angle for the same. Thus, we will firstly evaluate the equation at time $t = 0$. Then, we will use some basic trigonometric ideas to manipulate the evaluated value and then come up with an answer.
Complete step by step solution:
Here,
The given equation is,
$\Rightarrow$ $i = 10\sin \omega t + 8\cos \omega t$
Now,
For the initial value, we take time $t = 0$
Taking here, we get
$\Rightarrow$ $i = 10\sin \left( 0 \right) + 8\cos \left( 0 \right)$
We know,
$\sin \left( 0 \right) = 0$ And$\cos \left( 0 \right) = 1$
Thus, we get
$\Rightarrow$ $i = 8\left( 1 \right)$
Further, we get
$i = 8$
Now,
$\Rightarrow$ ${i_o} = \sqrt {{{\left( {10} \right)}^2} + {{\left( 8 \right)}^2}} $
Further, we get
${i_o} = \sqrt {164} $
Where,${i_o}$ is the amplitude of the motion.
Now,
As per the generic equation of such motion,
$i = {i_o}\sin \left( {\omega t + \phi } \right)$
For time$t = 0$,
$i = {i_0}\sin \phi $
Then, we get
$\sin \phi = \dfrac{i}{{{i_o}}}$
Thus, we get
$\sin \phi = \dfrac{8}{{\sqrt {164} }}$
Thus,
$\Rightarrow$ $\tan \phi = \dfrac{8}{{\sqrt {164 - 64} }}$
Thus,
$\Rightarrow$ $\tan \phi = \dfrac{8}{{10}}$
Thus,
$\Rightarrow$ $\tan \phi = \dfrac{4}{5}$
Hence, we get
$\Rightarrow$ $\phi = {\tan ^{ - 1}}\left( {\dfrac{4}{5}} \right)$
Hence, the correct option is (A).
Note: We have converted the sine function to a tangent one as all the given options are in the same format. We used basic trigonometry for conversion. One should not confuse it to be a given parameter.
Complete step by step solution:
Here,
The given equation is,
$\Rightarrow$ $i = 10\sin \omega t + 8\cos \omega t$
Now,
For the initial value, we take time $t = 0$
Taking here, we get
$\Rightarrow$ $i = 10\sin \left( 0 \right) + 8\cos \left( 0 \right)$
We know,
$\sin \left( 0 \right) = 0$ And$\cos \left( 0 \right) = 1$
Thus, we get
$\Rightarrow$ $i = 8\left( 1 \right)$
Further, we get
$i = 8$
Now,
$\Rightarrow$ ${i_o} = \sqrt {{{\left( {10} \right)}^2} + {{\left( 8 \right)}^2}} $
Further, we get
${i_o} = \sqrt {164} $
Where,${i_o}$ is the amplitude of the motion.
Now,
As per the generic equation of such motion,
$i = {i_o}\sin \left( {\omega t + \phi } \right)$
For time$t = 0$,
$i = {i_0}\sin \phi $
Then, we get
$\sin \phi = \dfrac{i}{{{i_o}}}$
Thus, we get
$\sin \phi = \dfrac{8}{{\sqrt {164} }}$
Thus,
$\Rightarrow$ $\tan \phi = \dfrac{8}{{\sqrt {164 - 64} }}$
Thus,
$\Rightarrow$ $\tan \phi = \dfrac{8}{{10}}$
Thus,
$\Rightarrow$ $\tan \phi = \dfrac{4}{5}$
Hence, we get
$\Rightarrow$ $\phi = {\tan ^{ - 1}}\left( {\dfrac{4}{5}} \right)$
Hence, the correct option is (A).
Note: We have converted the sine function to a tangent one as all the given options are in the same format. We used basic trigonometry for conversion. One should not confuse it to be a given parameter.
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electrical Field of Charged Spherical Shell - JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Displacement-Time Graph and Velocity-Time Graph for JEE

Collision - Important Concepts and Tips for JEE

Which of the following is the smallest unit of length class 11 physics JEE_Main

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Charging and Discharging of Capacitor

Brief Information on Alpha, Beta and Gamma Decay - JEE Important Topic

Compressibility Factor Z | Plot of Compressibility Factor Z Vs Pressure for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Laws of Motion Class 11 Notes: CBSE Physics Chapter 4
