
 If three unequal numbers $P,Q,R$ are in H.P. and their squares are in A.P., then the ratio $P:Q:R$ is
A. $1 - \sqrt 3 :2:1 + \sqrt 3 $
B. $1:\sqrt 2 : - \sqrt 3 $
C. $1: - \sqrt 2 :\sqrt 3 $
D. $ - 1 \pm \sqrt 3 :2: - 1 \mp \sqrt 3 $
Answer
204.3k+ views
 Hint: Given that three unequal numbers $P,Q,R$ are in H.P. It means its reciprocals are in A.P. So, $\dfrac{2}{Q} = \dfrac{1}{P} + \dfrac{1}{R}$. Let $Q = 2k$ and $PR = k(P + R)$. Also given that the squares of the numbers ${P^2},{Q^2},{R^2}$ are in A.P. So, $2{Q^2} = {P^2} + {R^2}$. Substitute $Q = 2k$ and $PR = k(P + R)$ in this equation. After substitution a quadratic formula in $\left( {P + R} \right)$ will be obtained. Solving this equation two roots will be obtained. For two different roots, two different values of $P,Q,R$ will be obtained and hence you can find the required ratio.
Complete step by step solution:
Here $P,Q,R$ are in H.P., so
$\dfrac{2}{Q} = \dfrac{1}{P} + \dfrac{1}{R}$
Add the fractions in the right hand side of the equation.
$ \Rightarrow \dfrac{2}{Q} = \dfrac{{P + R}}{{PR}}$
Take reciprocal of both the expressions on both sides of the equation.
$ \Rightarrow \dfrac{Q}{2} = \dfrac{{PR}}{{P + R}}$
Let $\dfrac{Q}{2} = \dfrac{{PR}}{{P + R}} = k$(say)
Then $\dfrac{Q}{2} = k$ and $\dfrac{{PR}}{{P + R}} = k$
$Q = 2k$ and $PR = k(P + R).....(i)$
Again, the squares of the numbers i.e. ${P^2},{Q^2},{R^2}$ are in A.P. So,
$2{Q^2} = {P^2} + {R^2}$
Use the formula ${a^2} + {b^2} = {(a + b)^2} - 2ab$
$ \Rightarrow 2{Q^2} = {\left( {P + R} \right)^2} - 2PR$
Substitute $Q = 2k$ and $PR = k\left( {P + R} \right)$
$ \Rightarrow 8{k^2} = {\left( {P + R} \right)^2} - 2k\left( {P + R} \right)$
This is a quadratic equation in $\left( {P + R} \right)$
Let $P + R = S$
Then the equation becomes $8{k^2} = {S^2} - 2kS$
Arrange the terms of the equation
$ \Rightarrow {S^2} - 2kS - 8{k^2} = 0.....(ii)$
Factorize the expression on the left hand side of the equation.
$\begin{array}{l}{S^2} - 2kS - 8{k^2}\\ = {S^2} - 4kS + 2kS - 8{k^2}\\ = S\left( {S - 4k} \right) + 2k\left( {S - 4k} \right)\\ = \left( {S - 4k} \right)\left( {S + 2k} \right)\end{array}$
From equation $(ii)$, we get
$ \Rightarrow \left( {S - 4k} \right)\left( {S + 2k} \right) = 0$
If $S - 4k = 0$, then $S = 4k$
If $S + 2k = 0$, then $S = - 2k$
We assumed that $P + R = S$
So, $P + R = 4k$ or $P + R = - 2k$
Substitute the expressions for $\left( {P + R} \right)$ in equation $(i)$
If $P + R = 4k$, then $PR = 4{k^2}$
If $P + R = - 2k$, then $PR = - 2{k^2}$
Now, use the formula ${\left( {a - b} \right)^2} = {\left( {a + b} \right)^2} - 4ab$
$\therefore {\left( {P - R} \right)^2} = {\left( {P + R} \right)^2} - 4PR$
If $P + R = 4k$, then $PR = 4{k^2}$, so
$\begin{array}{l}{\left( {P - R} \right)^2} = 16{k^2} - 16{k^2}\\ \Rightarrow {\left( {P - R} \right)^2} = 0\\ \Rightarrow P - R = 0\\ \Rightarrow P = R\end{array}$
But it is given that $P,Q,R$ are not equal. So, it is impossible.
Now, we have only one option i.e. $P + R = - 2k...(iii)$, then $PR = - 2{k^2}$
Using these, we get
$\begin{array}{l}{\left( {P - R} \right)^2} = 4{k^2} + 8{k^2}\\ \Rightarrow {\left( {P - R} \right)^2} = 12{k^2}\\ \Rightarrow P - R = \pm \sqrt {12{k^2}} \\ \Rightarrow P - R = \pm 2\sqrt 3 k.....(iv)\end{array}$
Taking $P + R = - 2k$ and $P - R = 2\sqrt 3 k$, we get
$\begin{array}{l}2P = - 2k + 2\sqrt 3 k\\ \Rightarrow P = - k + \sqrt 3 k\\ \Rightarrow P = \left( { - 1 + \sqrt 3 } \right)k\end{array}$
Putting the value of $P$ in equation $(iii)$, we get
$\begin{array}{l}\left( { - 1 + \sqrt 3 } \right)k + R = - 2k\\ \Rightarrow R = - 2k - \left( { - 1 + \sqrt 3 } \right)k\\ \Rightarrow R = \left( { - 2 + 1 - \sqrt 3 } \right)k\\ \Rightarrow R = \left( { - 1 - \sqrt 3 } \right)k\end{array}$
∴ We have $P = \left( { - 1 + \sqrt 3 } \right)k$ and $R = \left( { - 1 - \sqrt 3 } \right)k$ and $Q = 2k$
Hence the ratio $P:Q:R = \left( { - 1 + \sqrt 3 } \right)k:2k:\left( { - 1 - \sqrt 3 } \right)k = \left( { - 1 + \sqrt 3 } \right):2:\left( { - 1 - \sqrt 3 } \right).....(v)$
Taking $P + R = - 2k$ and $P - R = - 2\sqrt 3 k$, we get
$\begin{array}{l}2P = - 2k - 2\sqrt 3 k\\ \Rightarrow P = - k - \sqrt 3 k\\ \Rightarrow P = \left( { - 1 - \sqrt 3 } \right)k\end{array}$
Putting the value of P in equation iii, we get
$\begin{array}{l}\left( { - 1 - \sqrt 3 } \right)k + R = - 2k\\ \Rightarrow R = - 2k - \left( { - 1 - \sqrt 3 } \right)k\\ \Rightarrow R = \left( { - 2 + 1 + \sqrt 3 } \right)k\\ \Rightarrow R = \left( { - 1 + \sqrt 3 } \right)k\end{array}$
We have $P = \left( { - 1 - \sqrt 3 } \right)k$ and $R = \left( { - 1 + \sqrt 3 } \right)k$ and $Q = 2k$
Hence the ratio $P:Q:R = \left( { - 1 - \sqrt 3 } \right)k:2k:\left( { - 1 + \sqrt 3 } \right)k = \left( { - 1 - \sqrt 3 } \right):2:\left( { - 1 + \sqrt 3 } \right).....(vi)$
From the ratios obtained in $(v)$ and $(vi)$, we get
The ratio $P:Q:R$ is $\left( { - 1 \pm \sqrt 3 } \right):2:\left( { - 1 \mp \sqrt 3 } \right)$
Note: Some terms are in H.P. means the reciprocals of the terms are in A.P.
It is given in the question that the numbers $P,Q,R$ are unequal. For this reason, $P = R$ has been rejected.
The obtained value of $P$ is $\left( { - 1 + \sqrt 3 } \right)$ for $R = - 1 - \sqrt 3 $ and the obtained value of $P$ is $\left( { - 1 - \sqrt 3 } \right)$ for $R = - 1 + \sqrt 3 $. You should keep it in mind while writing the answer.
Complete step by step solution:
Here $P,Q,R$ are in H.P., so
$\dfrac{2}{Q} = \dfrac{1}{P} + \dfrac{1}{R}$
Add the fractions in the right hand side of the equation.
$ \Rightarrow \dfrac{2}{Q} = \dfrac{{P + R}}{{PR}}$
Take reciprocal of both the expressions on both sides of the equation.
$ \Rightarrow \dfrac{Q}{2} = \dfrac{{PR}}{{P + R}}$
Let $\dfrac{Q}{2} = \dfrac{{PR}}{{P + R}} = k$(say)
Then $\dfrac{Q}{2} = k$ and $\dfrac{{PR}}{{P + R}} = k$
$Q = 2k$ and $PR = k(P + R).....(i)$
Again, the squares of the numbers i.e. ${P^2},{Q^2},{R^2}$ are in A.P. So,
$2{Q^2} = {P^2} + {R^2}$
Use the formula ${a^2} + {b^2} = {(a + b)^2} - 2ab$
$ \Rightarrow 2{Q^2} = {\left( {P + R} \right)^2} - 2PR$
Substitute $Q = 2k$ and $PR = k\left( {P + R} \right)$
$ \Rightarrow 8{k^2} = {\left( {P + R} \right)^2} - 2k\left( {P + R} \right)$
This is a quadratic equation in $\left( {P + R} \right)$
Let $P + R = S$
Then the equation becomes $8{k^2} = {S^2} - 2kS$
Arrange the terms of the equation
$ \Rightarrow {S^2} - 2kS - 8{k^2} = 0.....(ii)$
Factorize the expression on the left hand side of the equation.
$\begin{array}{l}{S^2} - 2kS - 8{k^2}\\ = {S^2} - 4kS + 2kS - 8{k^2}\\ = S\left( {S - 4k} \right) + 2k\left( {S - 4k} \right)\\ = \left( {S - 4k} \right)\left( {S + 2k} \right)\end{array}$
From equation $(ii)$, we get
$ \Rightarrow \left( {S - 4k} \right)\left( {S + 2k} \right) = 0$
If $S - 4k = 0$, then $S = 4k$
If $S + 2k = 0$, then $S = - 2k$
We assumed that $P + R = S$
So, $P + R = 4k$ or $P + R = - 2k$
Substitute the expressions for $\left( {P + R} \right)$ in equation $(i)$
If $P + R = 4k$, then $PR = 4{k^2}$
If $P + R = - 2k$, then $PR = - 2{k^2}$
Now, use the formula ${\left( {a - b} \right)^2} = {\left( {a + b} \right)^2} - 4ab$
$\therefore {\left( {P - R} \right)^2} = {\left( {P + R} \right)^2} - 4PR$
If $P + R = 4k$, then $PR = 4{k^2}$, so
$\begin{array}{l}{\left( {P - R} \right)^2} = 16{k^2} - 16{k^2}\\ \Rightarrow {\left( {P - R} \right)^2} = 0\\ \Rightarrow P - R = 0\\ \Rightarrow P = R\end{array}$
But it is given that $P,Q,R$ are not equal. So, it is impossible.
Now, we have only one option i.e. $P + R = - 2k...(iii)$, then $PR = - 2{k^2}$
Using these, we get
$\begin{array}{l}{\left( {P - R} \right)^2} = 4{k^2} + 8{k^2}\\ \Rightarrow {\left( {P - R} \right)^2} = 12{k^2}\\ \Rightarrow P - R = \pm \sqrt {12{k^2}} \\ \Rightarrow P - R = \pm 2\sqrt 3 k.....(iv)\end{array}$
Taking $P + R = - 2k$ and $P - R = 2\sqrt 3 k$, we get
$\begin{array}{l}2P = - 2k + 2\sqrt 3 k\\ \Rightarrow P = - k + \sqrt 3 k\\ \Rightarrow P = \left( { - 1 + \sqrt 3 } \right)k\end{array}$
Putting the value of $P$ in equation $(iii)$, we get
$\begin{array}{l}\left( { - 1 + \sqrt 3 } \right)k + R = - 2k\\ \Rightarrow R = - 2k - \left( { - 1 + \sqrt 3 } \right)k\\ \Rightarrow R = \left( { - 2 + 1 - \sqrt 3 } \right)k\\ \Rightarrow R = \left( { - 1 - \sqrt 3 } \right)k\end{array}$
∴ We have $P = \left( { - 1 + \sqrt 3 } \right)k$ and $R = \left( { - 1 - \sqrt 3 } \right)k$ and $Q = 2k$
Hence the ratio $P:Q:R = \left( { - 1 + \sqrt 3 } \right)k:2k:\left( { - 1 - \sqrt 3 } \right)k = \left( { - 1 + \sqrt 3 } \right):2:\left( { - 1 - \sqrt 3 } \right).....(v)$
Taking $P + R = - 2k$ and $P - R = - 2\sqrt 3 k$, we get
$\begin{array}{l}2P = - 2k - 2\sqrt 3 k\\ \Rightarrow P = - k - \sqrt 3 k\\ \Rightarrow P = \left( { - 1 - \sqrt 3 } \right)k\end{array}$
Putting the value of P in equation iii, we get
$\begin{array}{l}\left( { - 1 - \sqrt 3 } \right)k + R = - 2k\\ \Rightarrow R = - 2k - \left( { - 1 - \sqrt 3 } \right)k\\ \Rightarrow R = \left( { - 2 + 1 + \sqrt 3 } \right)k\\ \Rightarrow R = \left( { - 1 + \sqrt 3 } \right)k\end{array}$
We have $P = \left( { - 1 - \sqrt 3 } \right)k$ and $R = \left( { - 1 + \sqrt 3 } \right)k$ and $Q = 2k$
Hence the ratio $P:Q:R = \left( { - 1 - \sqrt 3 } \right)k:2k:\left( { - 1 + \sqrt 3 } \right)k = \left( { - 1 - \sqrt 3 } \right):2:\left( { - 1 + \sqrt 3 } \right).....(vi)$
From the ratios obtained in $(v)$ and $(vi)$, we get
The ratio $P:Q:R$ is $\left( { - 1 \pm \sqrt 3 } \right):2:\left( { - 1 \mp \sqrt 3 } \right)$
Note: Some terms are in H.P. means the reciprocals of the terms are in A.P.
It is given in the question that the numbers $P,Q,R$ are unequal. For this reason, $P = R$ has been rejected.
The obtained value of $P$ is $\left( { - 1 + \sqrt 3 } \right)$ for $R = - 1 - \sqrt 3 $ and the obtained value of $P$ is $\left( { - 1 - \sqrt 3 } \right)$ for $R = - 1 + \sqrt 3 $. You should keep it in mind while writing the answer.
Recently Updated Pages
Verify whether the following are zeroes of the following class 10 maths JEE_Main

What is the mode of distribution for the given list class 10 maths JEE_Main

The value of p for which both the roots of the equation class 10 maths JEE_Main

The image of the point left 4 3 right with respect class 10 maths JEE_Main

The mean of a set of numbers is X If each number is class 10 maths JEE_Main

The system of equations kx + y + z 1 x + ky + z k and class 10 maths JEE_Main

Trending doubts
JEE Main 2026: Exam Date, Syllabus, Eligibility, Application Form & Preparation Tips

Newton’s Laws of Motion Explained: Concepts, Formulas & Uses

JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Syllabus 2026 (Updated)

NTA JEE Main 2026 Registration Live: Check Dates, Fees, and Eligibility Here

JEE Mains 2025 Cutoff: Expected and Category-Wise Qualifying Marks for NITs, IIITs, and GFTIs

Other Pages
NCERT Solutions For Class 10 Maths Chapter 12 Surface Area And Volume

NCERT Solutions for Class 10 Maths Chapter Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related to Circles 2025-26

NCERT Solutions for Class 10 Maths Chapter 15 Probability

Pregnancy Week and Due Date Calculator: Find How Far Along You Are

All Mensuration Formulas with Examples and Quick Revision

